165 research outputs found
Cortical region interactions and the functional role of apical dendrites
The basal and distal apical dendrites of pyramidal cells occupy distinct
cortical layers and are targeted by axons originating in different cortical
regions. Hence, apical and basal dendrites receive information from distinct
sources. Physiological evidence suggests that this anatomically observed
segregation of input sources may have functional significance. This possibility
has been explored in various connectionist models that employ neurons with
functionally distinct apical and basal compartments. A neuron in which separate
sets of inputs can be integrated independently has the potential to operate in a
variety of ways which are not possible for the conventional model of a neuron in
which all inputs are treated equally. This article thus considers how
functionally distinct apical and basal dendrites can contribute to the
information processing capacities of single neurons and, in particular, how
information from different cortical regions could have disparate affects on
neural activity and learning
A feedback model of visual attention
Feedback connections are a prominent feature of cortical anatomy and are likely
to have significant functional role in neural information processing. We present
a neural network model of cortical feedback that successfully simulates
neurophysiological data associated with attention. In this domain our model can
be considered a more detailed, and biologically plausible, implementation of the
biased competition model of attention. However, our model is more general as it
can also explain a variety of other top-down processes in vision, such as
figure/ground segmentation and contextual cueing. This model thus suggests that
a common mechanism, involving cortical feedback pathways, is responsible for a
range of phenomena and provides a unified account of currently disparate areas
of research
Exploring the functional significance of dendritic inhibition in cortical pyramidal cells
Inhibitory synapses contacting the soma and axon initial segment are commonly
presumed to participate in shaping the response properties of cortical pyramidal
cells. Such an inhibitory mechanism has been explored in numerous computational
models. However, the majority of inhibitory synapses target the dendrites of
pyramidal cells, and recent physiological data suggests that this dendritic
inhibition affects tuning properties. We describe a model that can be used to
investigate the role of dendritic inhibition in the competition between
neurons. With this model we demonstrate that dendritic inhibition significantly
enhances the computational and representational properties of neural networks
Pre-integration lateral inhibition enhances unsupervised learning
A large and influential class of neural network architectures use
post-integration lateral inhibition as a mechanism for competition. We argue
that these algorithms are computationally deficient in that they fail to
generate, or learn, appropriate perceptual representations under certain
circumstances. An alternative neural network architecture is presented in which
nodes compete for the right to receive inputs rather than for the right to
generate outputs. This form of competition, implemented through pre-integration
lateral inhibition, does provide appropriate coding properties and can be used
to efficiently learn such representations. Furthermore, this architecture is
consistent with both neuro-anatomical and neuro-physiological data. We thus
argue that pre-integration lateral inhibition has computational advantages over
conventional neural network architectures while remaining equally biologically
plausible
Dendritic inhibition enhances neural coding properties.
The presence of a large number of inhibitory contacts at the soma and axon
initial segment of cortical pyramidal cells has inspired a large and influential
class of neural network model which use post-integration lateral inhibition as a
mechanism for competition between nodes. However, inhibitory synapses also
target the dendrites of pyramidal cells. The role of this dendritic inhibition
in competition between neurons has not previously been addressed. We
demonstrate, using a simple computational model, that such pre-integration
lateral inhibition provides networks of neurons with useful representational and
computational properties which are not provided by post-integration
inhibition
Neural coding strategies and mechanisms of competition
A long running debate has concerned the question of whether neural
representations are encoded using a distributed or a local coding scheme. In
both schemes individual neurons respond to certain specific patterns of
pre-synaptic activity. Hence, rather than being dichotomous, both coding
schemes are based on the same representational mechanism. We argue that a
population of neurons needs to be capable of learning both local and distributed
representations, as appropriate to the task, and should be capable of generating
both local and distributed codes in response to different stimuli. Many neural
network algorithms, which are often employed as models of cognitive processes,
fail to meet all these requirements. In contrast, we present a neural network
architecture which enables a single algorithm to efficiently learn, and respond
using, both types of coding scheme
A single functional model accounts for the distinct properties of suppression in cortical area V1
AbstractCross-orientation suppression and surround suppression have been extensively studied in primary visual cortex (V1). These two forms of suppression have some distinct properties which has led to the suggestion that they are generated by different underlying mechanisms. Furthermore, it has been suggested that mechanisms other than intracortical inhibition may be central to both forms of suppression. A simple computational model (PC/BC), in which intracortical inhibition is fundamental, is shown to simulate the distinct properties of cross-orientation and surround suppression. The same model has previously been shown to account for a large range of V1 response properties including orientation-tuning, spatial and temporal frequency tuning, facilitation and inhibition by flankers and textured surrounds as well as a range of other experimental results on cross-orientation suppression and surround suppression. The current results thus provide additional support for the PC/BC model of V1 and for the proposal that the diverse range of response properties observed in V1 neurons have a single computational explanation. Furthermore, these results demonstrate that current neurophysiological evidence is insufficient to discount intracortical inhibition as a central mechanism underlying both forms of suppression
Predictive coding as a model of the V1 saliency map hypothesis
The predictive coding/biased competition (PC/BC) model is a specific implementation of predictive coding theory that has previously been shown to provide a detailed account of the response properties of orientation tuned cells in primary visual cortex (V1). Here it is shown that the same model can successfully simulate psy-chophysical data relating to the saliency of unique items in search arrays, of contours embedded in random texture, and of borders between textured regions. This model thus provides a possible implementation of the hypothesis that V1 generates a bottom-up saliency map. However, PC/BC is very different from previous mod-els of visual salience, in that it proposes that saliency results from the failure of an internal model of simple elementary image components to accurately predict the visual input. Saliency can therefore be interpreted as a mechanism by which prediction errors attract attention in an attempt to improve the accuracy of the brain’s internal representation of the world
A review of predictive coding algorithms
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature; the first neuroscience-related application of predictive coding to explaining the function of the retina; and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology.</p
- …