201 research outputs found

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at √s = 13 TeV

    Get PDF
    Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb−1 recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9−7.3+7.5(stat)−6.0+7.3(syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and represents the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37−0.42+0.56(stat)−0.13+0.27(syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 ± 0.16 (stat) ± 0.06 (syst), in agreement with SM predictions. [Figure not available: see fulltext.

    Search for new particles in an extended Higgs sector with four b quarks in the final state at √s = 13 TeV

    Get PDF
    A search for a massive resonance X decaying to a pair of spin-0 bosons ϕ that themselves decay to pairs of bottom quarks, is presented. The analysis is restricted to the mass ranges from 25 to 100 GeV and from 1 to 3 TeV. For these mass ranges, the decay products of each ϕ boson are expected to merge into a single large-radius jet. Jet substructure and flavor identification techniques are used to identify these jets. The search is based on CERN LHC proton-proton collision data at , collected with the CMS detector in 2016–2018, corresponding to an integrated luminosity of 138 . Model-specific limits, where the two new particles arise from an extended Higgs sector, are set on the product of the production cross section and branching fraction for as a function of the resonances' masses, where both the and branching fractions are assumed to be 100%. These limits are the first of their kind on this process, ranging between 30 and 1 fb at 95% confidence level for the considered mass ranges

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at √ s = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv (https://arxiv.org/abs/2112.09734).Copyright © CERN, for the benefit of the CMS Collaboration. A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B(t → Hu) < 0.079 (0.11)% and B(t → Hc) < 0.094 (0.086)%.SCOAP3

    Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at root s=13 TeV

    Get PDF
    Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb−1 recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9+7.5−7.3(stat)+7.3−6.0(syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and represents the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37+0.56−0.42(stat)+0.27−0.13(syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 ± 0.16 (stat) ± 0.06 (syst), in agreement with SM predictions

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at root s=13 TeV

    Get PDF
    A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B(t → Hu) < 0.079 (0.11)% and B(t → Hc) < 0.094 (0.086)%

    Effect of local soil conditions on dynamic ground response in the southern coast of Izmir Bay, Turkey

    No full text
    The city of Izmir, located at the western end of Turkey, has experienced many strong earthquakes throughout its history. The southern coast of Izmir Bay, one of the most densely populated areas of Izmir, is located on deep alluvial sediments. It is important to determine the effect of local soil conditions on dynamic ground response in the study area, where thick loose water-saturated alluvial sediments exist. A database including geotechnical and geological information on the study area is constructed. Majority of the site is classified as D and E according to NEHRP provisions. Dynamic site response analyses are performed with EERA by utilizing the field and laboratory test results and earthquake time histories of moderate-scale earthquakes such as 1977 Izmir (M-L = 5.3), 2003 Urla (M-d = 5.6), and 2005 Uzunkuyu-Urla (M-L = 5.9), which occurred in and nearby Izmir. In addition, a scenario ground motion generated by the Izmir Fault with a magnitude of 6.5, having an average distance of 10 km to the study area, is also considered. The output data obtained from the dynamic site response analyses are evaluated, and maps displaying variation in dynamic parameters on ground surface are prepared for the southern coast of Izmir Bay, Turkey. Consequently, the dynamic analyses performed with the soil models constituted for the study area verified the damage occurred in a close distance event of 1977 Izmir earthquake. The scenario earthquake resulted in peak ground accelerations more than 0.6g at the eastern and western ends of the study area. However, long distance events resulted in spectral amplifications by up to 5 times. With this study, it is emphasized that local soil conditions should be evaluated individually in the area of interest. Generation of a site-specific design spectrum is recommended for the areas located on deep alluvial sediments. (C) 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved
    • 

    corecore