21 research outputs found

    Improved performance and stability in quantum dot solar cells through band alignment engineering

    No full text
    Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing [superscript 1], all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ​[ZnO over ​PbS] quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.National Science Foundation (U.S.)Hertz FoundationSamsung Advanced Institute of TechnologyNational Institutes of Health (U.S.) (Massachusetts Institute of Technology. Laser Biomedical Research Center. Contract 9-P41-EB015871-26A1)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (MIT Center for Materials Science and Engineering. Award DMR-08-19762
    corecore