1,028 research outputs found

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    VideoGraph: Recognizing Minutes-Long Human Activities in Videos

    Get PDF
    Many human activities take minutes to unfold. To represent them, related works opt for statistical pooling, which neglects the temporal structure. Others opt for convolutional methods, as CNN and Non-Local. While successful in learning temporal concepts, they are short of modeling minutes-long temporal dependencies. We propose VideoGraph, a method to achieve the best of two worlds: represent minutes-long human activities and learn their underlying temporal structure. VideoGraph learns a graph-based representation for human activities. The graph, its nodes and edges are learned entirely from video datasets, making VideoGraph applicable to problems without node-level annotation. The result is improvements over related works on benchmarks: Epic-Kitchen and Breakfast. Besides, we demonstrate that VideoGraph is able to learn the temporal structure of human activities in minutes-long videos

    Siamese Instance Search for Tracking

    Get PDF
    In this paper we present a tracker, which is radically different from state-of-the-art trackers: we apply no model updating, no occlusion detection, no combination of trackers, no geometric matching, and still deliver state-of-the-art tracking performance, as demonstrated on the popular online tracking benchmark (OTB) and six very challenging YouTube videos. The presented tracker simply matches the initial patch of the target in the first frame with candidates in a new frame and returns the most similar patch by a learned matching function. The strength of the matching function comes from being extensively trained generically, i.e., without any data of the target, using a Siamese deep neural network, which we design for tracking. Once learned, the matching function is used as is, without any adapting, to track previously unseen targets. It turns out that the learned matching function is so powerful that a simple tracker built upon it, coined Siamese INstance search Tracker, SINT, which only uses the original observation of the target from the first frame, suffices to reach state-of-the-art performance. Further, we show the proposed tracker even allows for target re-identification after the target was absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition, 201

    Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

    Get PDF
    Event detection in unconstrained videos is conceived as a content-based video retrieval with two modalities: textual and visual. Given a text describing a novel event, the goal is to rank related videos accordingly. This task is zero-exemplar, no video examples are given to the novel event. Related works train a bank of concept detectors on external data sources. These detectors predict confidence scores for test videos, which are ranked and retrieved accordingly. In contrast, we learn a joint space in which the visual and textual representations are embedded. The space casts a novel event as a probability of pre-defined events. Also, it learns to measure the distance between an event and its related videos. Our model is trained end-to-end on publicly available EventNet. When applied to TRECVID Multimedia Event Detection dataset, it outperforms the state-of-the-art by a considerable margin.Comment: IEEE CVPR 201

    Real-World Repetition Estimation by Div, Grad and Curl

    Get PDF
    We consider the problem of estimating repetition in video, such as performing push-ups, cutting a melon or playing violin. Existing work shows good results under the assumption of static and stationary periodicity. As realistic video is rarely perfectly static and stationary, the often preferred Fourier-based measurements is inapt. Instead, we adopt the wavelet transform to better handle non-static and non-stationary video dynamics. From the flow field and its differentials, we derive three fundamental motion types and three motion continuities of intrinsic periodicity in 3D. On top of this, the 2D perception of 3D periodicity considers two extreme viewpoints. What follows are 18 fundamental cases of recurrent perception in 2D. In practice, to deal with the variety of repetitive appearance, our theory implies measuring time-varying flow and its differentials (gradient, divergence and curl) over segmented foreground motion. For experiments, we introduce the new QUVA Repetition dataset, reflecting reality by including non-static and non-stationary videos. On the task of counting repetitions in video, we obtain favorable results compared to a deep learning alternative

    Dynamic Steerable Blocks in Deep Residual Networks

    Get PDF
    Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks
    • …
    corecore