50 research outputs found
Importance of meteorological variables for aeroplankton dispersal in an urban environment
Passive wind dispersal is one of the major mechanisms through which organisms disperse and colonize new areas. The detailed comprehension of which factors affect this process may help to preserve its efficiency for years to come. This is especially important in the current context of climate change, which may seriously alter weather regimes that drive dispersal, and is crucial in urban contexts, where biodiversity is dramatically threatened by pollution and fragmentation of natural patches. Despite its interest, the analysis of factors affecting aeroplankton dispersal in urban environments is rare in literature. We sampled aeroplankton community uninterruptedly every 4 hours from 17th May to 19th September 2011 in the urban garden of Parco d'Orléans, within the campus of the University of Palermo (Sicily). Sampling was performed using a Johnson-Taylor suction trap with automatized sample storing. Weather variables were recorded at a local meteorological station. Overall, 11,739 insects were caught during the present study, about 60% of these belonged to the order Hymenoptera, with particular presence of families Agaonidae and Formicidae. The suction trap also captured specimens of very small size, and in some cases, species caught were new records for Italy. Composition and abundance of aeroplankton community was influenced by alternation day/night, as well as by daily fluctuations of climatic variables, for example fluctuating temperature . The diversity of samples was also studied and resulted higher when wind blew from the nearby green area. Our findings confirm that passive transport of arthropods strictly depends on weather conditions, and that the presence of natural areas within the urban environment significantly contribute to raise aeroplankton diversity, eventually fuelling overall biodiversity at a local scale. We discuss how climate change may affect future dispersal of these organisms