47 research outputs found

    A Tool to Recover Scalar Time-Delay Systems from Experimental Time Series

    Full text link
    We propose a method that is able to analyze chaotic time series, gained from exp erimental data. The method allows to identify scalar time-delay systems. If the dynamics of the system under investigation is governed by a scalar time-delay differential equation of the form dy(t)/dt=h(y(t),y(t−τ0))dy(t)/dt = h(y(t),y(t-\tau_0)), the delay time τ0\tau_0 and the functi on hh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. The method turns out to be insensitive to noise. We successfully apply the method to various time series taken from a computer experiment and two different electronic oscillators

    IL-6 Stabilizes Twist and Enhances Tumor Cell Motility in Head and Neck Cancer Cells through Activation of Casein Kinase 2

    Get PDF
    BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6) and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2) phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest that CK2 may be a viable therapeutic target in SCCHN
    corecore