1,623 research outputs found

    Quantum Communication and Computing With Atomic Ensembles Using Light-Shift Imbalance Induced Blockade

    Full text link
    Recently, we have shown that for conditions under which the so-called light-shift imbalance induced blockade (LSIIB) occurs, the collective excitation of an ensemble of a multi-level atom can be treated as a closed two level system. In this paper, we describe how such a system can be used as a quantum bit (qubit) for quantum communication and quantum computing. Specifically, we show how to realize a C-NOT gate using the collective qubit and an easily accessible ring cavity, via an extension of the so-called Pellizzari scheme. We also describe how multiple, small-scale quantum computers realized using these qubits can be linked effectively for implementing a quantum internet. We describe the details of the energy levels and transitions in 87Rb atom that could be used for implementing these schemes.Comment: 16 pages, 9 figures. Accepted in Phys. Rev.
    corecore