967 research outputs found

    Model-independent dark matter annihilation bound from the diffuse gamma ray flux

    Get PDF
    An upper limit on the total annihilation cross section of dark matter (DM) has recently been derived from the observed atmospheric neutrino background. We show that comparable bounds are obtained for DM masses around the TeV scale by observations of the diffuse gamma-ray flux by EGRET, because electroweak bremsstrahlung leads to non-negligible electromagnetic branching ratios, even if DM particles only couple to neutrinos at tree level. A better mapping and the partial resolution of the diffuse gamma-ray background into astrophysical sources by the GLAST satellite will improve this bound in the near future.Comment: 4 pages revtex, 2 figures; minor changes, references added, conclusions unchanged; Matches published versio

    Measuring the 13-mixing angle and the CP phase with neutrino telescopes

    Full text link
    The observed excess of high-energy cosmic rays from the Galactic plane in the energy range \sim 10^18 eV may be naturally explained by neutron primaries generated in the photo-dissociation of heavy nuclei. In this scenario, neutrons with lower energy decay before reaching the Earth and produce a detectable flux in a 1 km^3 neutrino telescope. The initial flavor composition of these neutrinos, \phi(\bar\nu_e):\phi(\bar\nu_\mu):\phi(\bar\nu_\tau)=1:0:0, offers the opportunity to perform a combined \bar\nu_\mu/\bar\nu_\tau appearance and \bar\nu_e disappearance experiment. The observable ratio \phi(\bar\nu_\mu)/\phi(\bar\nu_e+\bar\nu_\tau) of fluxes arriving on Earth depends appreciably on the 13-mixing angle \theta_13 and the leptonic CP phase \delta_CP, opening thus a new experimental avenue to measure these two quantities.Comment: 4 pages, 2 eps figures. Enlarged discussion, references added. Matches version to appear in PR

    The Galactic magnetic field as spectrograph for ultra-high energy cosmic rays

    Full text link
    We study the influence of the regular component of the Galactic magnetic field (GMF) on the arrival directions of ultra-high energy cosmic rays (UHECRs). We find that, if the angular resolution of current experiments has to be fully exploited, deflections in the GMF cannot be neglected even for E=10^20 eV protons, especially for trajectories along the Galactic plane or crossing the Galactic center region. On the other hand, the GMF could be used as a spectrograph to discriminate among different source models and/or primaries of UHECRs, if its structure would be known with sufficient precision. We compare several GMF models introduced in the literature and discuss for the example of the AGASA data set how the significance of small-scale clustering or correlations with given astrophysical sources are affected by the GMF. We point out that the non-uniform exposure to the extragalactic sky induced by the GMF should be taken into account estimating the significance of potential (auto-)correlation signals.Comment: 11 pages, 8 figures; minor corrections, enlarged discussion, contains an extended review on Galactic magnetic field compared to published version, to appear in Astroparticle Physic

    Reaching university students via partnerships with non-academic departments

    Get PDF
    Though libraries have long formed important relationships with academic departments via liaison librarians, the time has come to “sell” library services through non-academic departments via mutually beneficial partnerships. Partnerships with non-academic departments can be instrumental in reaching students who do not seek assistance from the library but who need it. By forming a win-win partnership with departments such as Career Services, Student Affairs, Counseling Services and others, use of library resources and the number of students served increases. The partnerships can also result in an improved standing of the library in the campus community.This paper provides examples of successful partnerships with measured outcomes that demonstrate the win-win of such partnerships

    Revisiting cosmological bounds on radiative neutrino lifetime

    Full text link
    Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.Comment: 7 pages, 3 figures. Minor changes in the text, few references added. Matches the published versio

    Spin-wave instabilities in spin-transfer-driven magnetization dynamics

    Full text link
    We study the stability of magnetization precessions induced in spin-transfer devices by the injection of spin-polarized electric currents. Instability conditions are derived by introducing a generalized, far-from-equilibrium interpretation of spin-waves. It is shown that instabilities are generated by distinct groups of magnetostatically coupled spin-waves. Stability diagrams are constructed as a function of external magnetic field and injected spin-polarized current. These diagrams show that applying larger fields and currents has a stabilizing effect on magnetization precessions. Analytical results are compared with numerical simulations of spin-transfer-driven magnetization dynamics.Comment: 4 pages, 2 figure

    Role of electroweak bremsstrahlung for indirect dark matter signatures

    Get PDF
    Interpretations of indirect searches for dark matter (DM) require theoretical predictions for the annihilation or decay rates of DM into stable particles of the standard model. These predictions include usually only final states accessible as lowest order tree-level processes, with electromagnetic bremsstrahlung and the loop-suppressed two gamma-ray line as exceptions. We show that this restriction may lead to severely biased results for DM tailored to produce only leptons in final states and with mass in the TeV range. For such models, unavoidable electroweak bremsstrahlung of Z and W-bosons has a significant influence both on the branching ratio and the spectral shape of the final state particles. We work out the consequences for two situations: First, the idealized case where DM annihilates at tree level with 100% branching ratio into neutrinos. For a given cross section, this leads eventually to “minimal yields” of photons, electrons, positrons, and antiprotons. Second, the case where the only allowed two-body final states are electrons. The latter case is typical of models aimed at fitting cosmic ray e- and e+ data. We find that the multimessenger signatures of such models can be significantly modified with respect to results presented in the literature

    Clustering properties of ultrahigh energy cosmic rays and the search for their astrophysical sources

    Full text link
    The arrival directions of ultrahigh energy cosmic rays (UHECRs) may show anisotropies on all scales, from just above the experimental angular resolution up to medium scales and dipole anisotropies. We find that a global comparison of the two-point auto-correlation function of the data with the one of catalogues of potential sources is a powerful diagnostic tool. In particular, this method is far less sensitive to unknown deflections in magnetic fields than cross-correlation studies while keeping a strong discrimination power among source candidates. We illustrate these advantages by considering ordinary galaxies, gamma ray bursts and active galactic nuclei as possible sources. Already the sparse publicly available data suggest that the sources of UHECRs may be a strongly clustered sub-sample of galaxies or of active galactic nuclei. We present forecasts for various cases of source distributions which can be checked soon by the Pierre Auger Observatory.Comment: 11 pages, 8 figures, 4 tables; minor changes, matches published versio

    Hierarchical Probabilistic Graphical Models and Deep Convolutional Neural Networks for Remote Sensing Image Classification

    Get PDF
    The method presented in this paper for semantic segmentation of multiresolution remote sensing images involves convolutional neural networks (CNNs), in particular fully convolutional networks (FCNs), and hierarchical probabilistic graphical models (PGMs). These approaches are combined to overcome the limitations in classification accuracy of CNNs for small or non-exhaustive ground truth (GT) datasets. Hierarchical PGMs, e.g., hierarchical Markov random fields (MRFs), are structured output learning models that exploit information contained at different image scales. This perfectly matches the intrinsically multiscale behavior of the processes of a CNN (e.g., pooling layers). The framework consists of a hierarchical MRF on a quadtree and a planar Markov model on each layer, modeling the interactions among pixels and accounting for both the multiscale and the spatial-contextual information. The marginal posterior mode criterion is used for inference. The adopted FCN is the U-Net and the experimental validation is conducted on the ISPRS 2D Semantic Labeling Challenge Vaihingen dataset, with some modifications to approach the case of scarce GTs and to assess the classification accuracy of the proposed technique. The proposed framework attains a higher recall compared to the considered FCNs, progressively more relevant as the training set is further from the ideal case of exhaustive GTs
    • …
    corecore