130 research outputs found
PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF-ÎșB and XBP1 binding sites.
Genome-wide association studies identified a PTGER4 expression-modulating region on chromosome 5p13.1 as Crohn's disease (CD) susceptibility region. The study aim was to test this association in a large cohort of patients with inflammatory bowel disease (IBD) and to elucidate genotypic and phenotypic interactions with other IBD genes. A total of 7073 patients and controls were genotyped: 844 CD and 471 patients with ulcerative colitis and 1488 controls were analyzed for the single nucleotide polymorphisms (SNPs) rs4495224 and rs7720838 on chromosome 5p13.1. The study included two replication cohorts of North American (CD: nâ=â684; controls: nâ=â1440) and of German origin (CD: nâ=â1098; controls: nâ=â1048). Genotype-phenotype, epistasis and transcription factor binding analyses were performed. In the discovery cohort, an association of rs4495224 (pâ=â4.10Ă10â»â”; 0.76 [0.67-0.87]) and of rs7720838 (pâ=â6.91Ă10â»âŽ; 0.81 [0.71-0.91]) with susceptibility to CD was demonstrated. These associations were confirmed in both replication cohorts. In silico analysis predicted rs4495224 and rs7720838 as essential parts of binding sites for the transcription factors NF-ÎșB and XBP1 with higher binding scores for carriers of the CD risk alleles, providing an explanation of how these SNPs might contribute to increased PTGER4 expression. There was no association of the PTGER4 SNPs with IBD phenotypes. Epistasis detected between 5p13.1 and ATG16L1 for CD susceptibility in the discovery cohort (pâ=â5.99Ă10â»â· for rs7720838 and rs2241880) could not be replicated in both replication cohorts arguing against a major role of this gene-gene interaction in the susceptibility to CD. We confirmed 5p13.1 as a major CD susceptibility locus and demonstrate by in silico analysis rs4495224 and rs7720838 as part of binding sites for NF-ÎșB and XBP1. Further functional studies are necessary to confirm the results of our in silico analysis and to analyze if changes in PTGER4 expression modulate CD susceptibility
6-thioguanine treatment in inflammatory bowel disease: A critical appraisal by a European 6-TG working party
Recently, the suggestion to use 6-thioguanine (6-TG) as an alternative thiopurine in patients with inflammatory bowel disease (IBD) has been discarded due to reports about possible (hepato) toxicity. During meetings arranged in Vienna and Prague in 2004, European experts applying 6-TG further on in IBD patients presented data on safety and efficacy of 6-TG. After thorough evaluation of its risk-benefit ratio, the group consented that 6-TG may still be considered as a rescue drug in stringently defined indications in IBD, albeit restricted to a clinical research setting. As a potential indication for administering 6-TG, we delineated the requirement for maintenance therapy as well as intolerance and/or resistance to aminosalicylates, azathioprine, 6-mercaptopurine, methotrexate and infliximab. Furthermore, indications are preferred in which surgery is thought to be inappropriate. The standard 6-TG dosage should not exceed 25 mg daily. Routine laboratory controls are mandatory in short intervals. Liver biopsies should be performed after 6-12 months, three years and then three-yearly accompanied by gastroduodenoscopy, to monitor for potential hepatotoxicity, including nodular regenerative hyperplasia (NRH) and veno-occlusive disease (VOD). Treatment with 6-TG must be discontinued in case of overt or histologically proven hepatotoxicity. Copyright (c) 2006 S. Karger AG, Basel
rs1004819 Is the Main Disease-Associated IL23R Variant in German Crohn's Disease Patients: Combined Analysis of IL23R, CARD15, and OCTN1/2 Variants
The IL23R gene has been identified as a susceptibility gene for inflammatory bowel disease (IBD) in the North American population. The aim of our study was to test this association in a large German IBD cohort and to elucidate potential interactions with other IBD genes as well as phenotypic consequences of IL23R variants. Genomic DNA from 2670 Caucasian individuals including 833 patients with Crohn's disease (CD), 456 patients with ulcerative colitis (UC), and 1381 healthy unrelated controls was analyzed for 10 IL23R SNPs. Genotyping included the NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007fsX1008 and polymorphisms in SLC22A4/OCTN1 (1672 C-->T) and SLC22A5/OCTN2 (-207 G-->C). All IL23R gene variants analyzed displayed highly significant associations with CD. The strongest association was found for the SNP rs1004819 [P = 1.92x10(-11); OR 1.56; 95 % CI (1.37-1.78)]. 93.2% of the rs1004819 TT homozygous carriers as compared to 78% of CC wildtype carriers had ileal involvement [P = 0.004; OR 4.24; CI (1.46-12.34)]. The coding SNP rs11209026 (p.Arg381Gln) was protective for CD [P = 8.04x10(-8); OR 0.43; CI (0.31-0.59)]. Similar, but weaker associations were found in UC. There was no evidence for epistasis between the IL23R gene and the CD susceptibility genes CARD15 and SLC22A4/5. IL23R is an IBD susceptibility gene, but has no epistatic interaction with CARD15 and SLC22A4/5. rs1004819 is the major IL23R variant associated with CD in the German population, while the p.Arg381Gln IL23R variant is a protective marker for CD and UC
Analysis of IL12B Gene Variants in Inflammatory Bowel Disease
IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknow
A Protective Role by Interleukin-17F in Colon Tumorigenesis
Interleukin-17F (IL-17F), produced by Th17 cells and other immune cells, is a member of IL-17 cytokine family with highest homology to IL-17A. IL-17F has been shown to have multiple functions in inflammatory responses. While IL-17A plays important roles in cancer development, the function of IL-17F in tumorigenesis has not yet been elucidated. In the current study, we found that IL-17F is expressed in normal human colonic epithelial cells, but this expression is greatly decreased in colon cancer tissues. To examine the roles of IL-17F in colon cancer, we have used IL-17F over-expressing colon cancer cell lines and IL-17F-deficient mice. Our data showed decreased tumor growth of IL-17F-transfected HCT116 cells comparing to mock transfectants when transplanted in nude mice. Conversely, there were increased colonic tumor numbers and tumor areas in Il-17fâ/â mice than those from wild-type controls after colon cancer induction. These results indicate that IL-17F plays an inhibitory role in colon tumorigenesis in vivo. In IL-17F over-expressing tumors, there was no significant change in leukocyte infiltration; instead, we found decreased VEGF levels and CD31+ cells. While the VEGF levels were increased in the colon tissues of Il-17fâ/â mice with colon cancer. Together, our findings demonstrate a protective role for IL-17F in colon cancer development, possibly via inhibiting tumor angiogenesis
The Role of Osteopontin (OPN/SPP1) Haplotypes in the Susceptibility to Crohn's Disease
Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients.
Genomic DNA from 2819 Caucasian individuals (nâ=â841 patients with Crohn's disease (CD), nâ=â473 patients with ulcerative colitis (UC), and nâ=â1505 healthy unrelated controls) was analyzed for nine OPN SNPs (rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754â=âp.Asp80Asp, rs1126616â=âp.Ala236Ala, rs1126772 and rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616, rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was protective in male CD patients (pâ=â0.0004, ORâ=â0.69). None of the other investigated OPN SNPs was associated with CD or UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 (omnibus p-valueâ=â2.07Ă10â»âž). Overall, the mean IL-22 secretion in the combined group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles (pâ=â3.66Ă10â»â”). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629 (pâ=â4.18Ă10â»ÂČ) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (pâ=â4.18Ă10â»ÂČ) but none of these associations remained significant after Bonferroni correction.
Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined effects of certain OPN variants may modulate IL-22 secretion
Th17-related cytokines: new players in the control of chronic intestinal inflammation
Crohn's disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD) in man, are thought to be caused by an excessive and poorly controlled immune response that is directed against components of the normal microflora. The exact sequence of events by which this pathological process is triggered and maintained is not fully understood, but studies in experimental models of IBD and data emerging from recent clinical trials indicate that T cell-derived cytokines are crucial mediators of the tissue damage. Although CD and UC have been traditionally considered two typical examples of T helper (Th)1 or Th2-associated disease respectively, it is now known that CD- and UC-related inflammation is also marked by enhanced production of cytokines made by a distinct subset of Th cells, termed Th17 cells. Th17 cytokines can have both tissue-protective and inflammatory effects in the gut and there is evidence that Th17 cells can alter their cytokine program according to the stimuli received and convert into Th1-producing cells. These novel findings have contributed to advancing our understanding of mechanisms of gut tissue damage and open new avenues for development of therapeutic strategies in IBD
Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q
Genome-wide association studies (GWAS) in several populations have demonstrated significant association of the IL23R gene with IBD (Crohn's disease (CD) and ulcerative colitis (UC)) and psoriasis, suggesting that perturbation of the IL-23 signaling pathway is relevant to the pathophysiology of these diseases. One particular variant, R381Q (rs11209026), confers strong protection against development of CD. We investigated the effects of this variant in primary T cells from healthy donors carrying IL23RR381 and IL23RQ381 haplotypes. Using a proprietary anti-IL23R antibody, ELISA, flow cytometry, phosphoflow and real-time RT-PCR methods, we examined IL23R expression and STAT3 phosphorylation and activation in response to IL-23. IL23RQ381 was associated with reduced STAT3 phosphorylation upon stimulation with IL-23 and decreased number of IL-23 responsive T-cells. We also observed slightly reduced levels of proinflammatory cytokine secretion in IL23RQ381 positive donors. Our study shows conclusively that IL23RQ381 is a loss-of-function allele, further strengthening the implication from GWAS results that the IL-23 pathway is pathogenic in human disease. This data provides an explanation for the protective role of R381Q in CD and may lead to the development of improved therapeutics for autoimmune disorders like CD
- âŠ