39 research outputs found

    Front. Plant. Sci.

    Get PDF
    Plasmodesmata (PD) pores connect neighbouring plant cells and enable direct transport across the cell wall. Understanding the molecular composition of these structures is essential to address their formation and later dynamic regulation. Here we provide a biochemical characterisation of the cell wall co-purified with primary PD of Arabidopsis thaliana cell cultures. To achieve this result we combined subcellular fractionation, polysaccharide analyses and enzymatic fingerprinting approaches. Relative to the rest of the cell wall, specific patterns were observed in the PD fraction. Most xyloglucans, although possibly not abundant as a group, were fucosylated. Homogalacturonans displayed short methylated stretches while rhamnogalacturonan I species were remarkably abundant. Ful l rhamnogalacturonan II forms, highly methyl-acetylated, were also present. We additionally showed that these domains, compared to the broad wall, are less affected by wall modifying activities during a time interval of days. Overall, the protocol and the data presented here open new opportunities for the study of wall polysaccharides associated with PD.Ecole Universitaire de Recherche de Sciences des Plantes de Paris-SaclayThe function of membrane tethering in plant intercellular communicatio

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Etude microbiologique de l'influence de la craie sur la vase des etangs

    No full text
    National audienc

    Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development

    No full text
    The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues

    Xyloglucans fucosylation defects do not alter plant boundary domain definition

    No full text
    The CUP-SHAPED COTYLEDON (CUC) transcription factors play a fundamental role in plant morphogenesis by defining boundary domains throughout plant development. Despite their central roles in plant development, little is known about the CUC molecular network. In a recent work, we identified a role for MUR1, a protein involved in the production of GDP-L-Fucose, in this network and showed that fucose per se is required for proper boundary definition in various developmental contexts. Which pathway involving fucose is required to determine boundary is not yet known. Here, we use a previously described mutant and transgenic line with reduced fucosylated xyloglucans (XyG) to explore one such pathway. By quantitatively comparing leaf shape, we show that defects in XyG fucosylation do not impact leaf serrations development suggesting that fucose absence in XyG does not impact boundary development in mur1-1 mutant. Thus another - not yet identified - pathway or fucosylated compound contribute to boundary domain definition.</p

    La lutte contre l'envasement

    No full text
    National audienc

    Influence of Near-Bed Coherent Structures on the Entrainment of Bed Gravels

    No full text
    corecore