11,204 research outputs found
Predictive information in Gaussian processes with application to music analysis
This is the author's accepted manuscript of this article. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40020-9.Lecture Notes in Computer ScienceLecture Notes in Computer ScienceWe describe an information-theoretic approach to the analysis of sequential data, which emphasises the predictive aspects of perception, and the dynamic process of forming and modifying expectations about an unfolding stream of data, characterising these using a set of process information measures. After reviewing the theoretical foundations and the definition of the predictive information rate, we describe how this can be computed for Gaussian processes, including how the approach can be adpated to non-stationary processes, using an online Bayesian spectral estimation method to compute the Bayesian surprise. We finish with a sample analysis of a recording of Steve Reich’s Drummin
Recommended from our members
Foreign Science and Engineering Presence in U.S. Institutions and the Labor Force
[Excerpt] The increased presence of foreign students in graduate science and engineering programs and in the scientific workforce has been and continues to be of concern to some in the scientific community. Enrollment of U.S. citizens in graduate science and engineering programs has not kept pace with that of foreign students in those programs. In addition to the number of foreign students in graduate science and engineering programs, a significant number of university faculty in the scientific disciplines are foreign, and foreign doctorates are employed in large numbers by industry.
Few will dispute that U.S. universities and industry have chosen foreign talent to fill many positions. Foreign scientists and engineers serve the needs of industry at the doctorate level and also have been found to serve in major roles at the masters level. However, there are charges that U.S. workers are adversely affected by the entry of foreign scientists and engineers, who reportedly accept lower wages than U.S. citizens would accept in order to enter or remain in the United States.
NSF data reveal that in 2005, the foreign student population earned approximately 34.7% of the doctorate degrees in the sciences and approximately 63.1% of the doctorate degrees in engineering. In 2005, foreign students on temporary resident visas earned 30.8% of the doctorates in the sciences, and 58.6% of the doctorates in engineering. The participation rates in 2004 were 28.5% and 57.3%, respectively. In 2005, permanent resident status students earned 3.8% of the doctorates in the sciences and 4.5% of the doctorates in engineering, slightly above the 2004 levels of 3.7% and 4.2%, respectively.
Many in the scientific community maintain that in order to compete with countries that are rapidly expanding their scientific and technological capabilities, the country needs to bring to the United States those whose skills will benefit society and will enable us to compete in the new-technology based global economy. The academic community is concerned that the more stringent visa requirements for foreign students may have a continued impact on enrollments in colleges and universities. There are those who believe that the underlying problem of foreign students in graduate science and engineering programs is not necessarily that there are too many foreign-born students, but that there are not enough native-born students pursuing scientific and technical disciplines.
Legislation has been introduced in the 110th Congress to attract foreign students in the scientific and technical disciplines. H.R. 1645, the Security Through Regularized Immigration and a Vibrant Economy Act of 2007, would provide, among other things, an expansion of the types of individuals who would no longer be subjected to the annual limits on legal immigrants. Included in this group would be those who (1) hold an advanced degree in science, mathematics, engineering, or technical fields and who have been working in the United States in a related field for three years on a nonimmigrant visa; and (2) been awarded a medical specialty certification based on post-doctoral training and experience in the United States
The CoRoT Exoplanet program : status & results
The CoRoT satellite is the first instrument hunting for planets from space.
We will review the status of the CoRoT/Exoplanet program. We will then present
the CoRoT exoplanetary systems and how they widen the range of properties of
the close-in population and contribute to our understanding of the properties
of planets.Comment: 10 pages, Proceeding of Haute Provence Observatory Colloquium (23-27
August 2010
Cerebellar Cortex, Purkinje Cell Layer
This report contains a summary of expression patterns for genes that are enriched in the Purkinje cell layer (CBXpu) of the cerebellum. All data is derived from the Allen Brain Atlas (ABA) in situ hybridization mouse project. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the CBXpu were compared to the values of its larger parent structure, in this case the cerebellar cortex, for the purpose of extracting regionally selective gene expression data. The highest ranking genes were manually curated and verified. 50 genes were then selected and compiled for expression analysis. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report. 

Anterior Olfactory Nucleus
This report contains a gene expression summary of the anterior olfactory nucleus (AON), derived from the Allen Brain Atlas (ABA) in situ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the AON were compared to the values of the macro/parent-structure, in this case the olfactory areas, for the purpose of extracting regionally selective gene expression data. The genes with the highest ranking selectivity ratios were manually curated and verified. 50 genes were then selected and compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the AON and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report
3D Reconstruction of the Density Field: An SVD Approach to Weak Lensing Tomography
We present a new method for constructing three-dimensional mass maps from
gravitational lensing shear data. We solve the lensing inversion problem using
truncation of singular values (within the context of generalized least squares
estimation) without a priori assumptions about the statistical nature of the
signal. This singular value framework allows a quantitative comparison between
different filtering methods: we evaluate our method beside the previously
explored Wiener filter approaches. Our method yields near-optimal angular
resolution of the lensing reconstruction and allows cluster sized halos to be
de-blended robustly. It allows for mass reconstructions which are 2-3
orders-of-magnitude faster than the Wiener filter approach; in particular, we
estimate that an all-sky reconstruction with arcminute resolution could be
performed on a time-scale of hours. We find however that linear, non-parametric
reconstructions have a fundamental limitation in the resolution achieved in the
redshift direction.Comment: 11 pages, 6 figures. Accepted for publication in Ap
Bioinformatics and the politics of innovation in the life sciences: Science and the state in the United Kingdom, China, and India
The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation
Large-k Limit of Multi-Point Propagators in the RG Formalism
Renormalized versions of cosmological perturbation theory have been very
successful in recent years in describing the evolution of structure formation
in the weakly non-linear regime. The concept of multi-point propagators has
been introduced as a tool to quantify the relation between the initial matter
distribution and the final one and to push the validity of the approaches to
smaller scales. We generalize the n-point propagators that have been considered
until now to include a new class of multi-point propagators that are relevant
in the framework of the renormalization group formalism. The large-k results
obtained for this general class of multi-point propagators match the results
obtained earlier both in the case of Gaussian and non-Gaussian initial
conditions. We discuss how the large-k results can be used to improve on the
accuracy of the calculations of the power spectrum and bispectrum in the
presence of initial non-Gaussianities.Comment: 30 page
Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations
The issue of intermittency in numerical solutions of the 3D Navier–Stokes equations on a periodic box [0,L]3 is addressed through four sets of numerical simulations that calculate a new set of variables defined by Dm(t)=(ϖ−10Ωm)αm for 1≤m≤∞ where αm=2m/(4m−3) and [Ωm(t)]2m=L−3∫V|ω|2mdV with ϖ0=νL−2. All four simulations unexpectedly show that the Dm are ordered for m=1,…,9 such that Dm+1<Dm. Moreover, the Dm squeeze together such that Dm+1/Dm↗1 as m increases. The values of D1 lie far above the values of the rest of the Dm, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier–Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 40963
- …