26 research outputs found

    Towards empirical analysis of educational innovations in organizations: An actor centred model based on the IAD framework

    Get PDF
    - There is a need for more empirical studies on internal institutional implementation- and adoption- mechanisms of open online education (Schophuizen, Kreijns, Stoyanov & Kalz, 2018). - There is no agreed upon approach that integrates the complex socio- technological interplay with the structuration of actors and the surrounding rules and resources in their multi-level environment. - The framework we propose fits better with attributes of OOE as a knowledge common by overcoming the dualism of individual vs. organization

    In vitro systems to study nephropharmacology : 2D versus 3D models

    Full text link
    The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration

    Uremic Toxins Induce ET-1 Release by Human Proximal Tubule Cells, which Regulates Organic Cation Uptake Time-Dependently

    Full text link
    In renal failure, the systemic accumulation of uremic waste products is strongly associated with the development of a chronic inflammatory state. Here, the effect of cationic uremic toxins on the release of inflammatory cytokines and endothelin-1 (ET-1) was investigated in conditionally immortalized proximal tubule epithelial cells (ciPTEC). Additionally, we examined the effects of ET-1 on the cellular uptake mediated by organic cation transporters (OCTs). Exposure of ciPTEC to cationic uremic toxins initiated production of the inflammatory cytokines IL-6 (117 ± 3%, p < 0.001), IL-8 (122 ± 3%, p < 0.001), and ET-1 (134 ± 5%, p < 0.001). This was accompanied by a down-regulation of OCT mediated 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP+) uptake in ciPTEC at 30 min (23 ± 4%, p < 0.001), which restored within 60 min of incubation. Exposure to ET-1 for 24 h increased the ASP+ uptake significantly (20 ± 5%, p < 0.001). These effects could be blocked by BQ-788, indicating activation of an ET-B-receptor-mediated signaling pathway. Downstream the receptor, iNOS inhibition by (N(G)-monomethyl-l-arginine) l-NMMA acetate or aminoguanidine, as well as protein kinase C activation, ameliorated the short-term effects. These results indicate that uremia results in the release of cytokines and ET-1 from human proximal tubule cells, in vitro. Furthermore, ET-1 exposure was found to regulate proximal tubular OCT transport activity in a differential, time-dependent, fashion

    A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue

    Full text link
    Promising renal replacement therapies include the development of a bioartificial kidney using functional human kidney cell models. In this study, human conditionally immortalized proximal tubular epithelial cell (ciPTEC) lines originating from kidney tissue (ciPTEC-T1 and ciPTEC-T2) were compared to ciPTEC previously isolated from urine (ciPTEC-U). Subclones of all ciPTEC isolates formed tight cell layers on Transwell inserts as determined by transepithelial resistance, inulin diffusion, E-cadherin expression and immunocytochemisty. Extracellular matrix genes collagen I and -IV α1 were highly present in both kidney tissue derived matured cell lines (p<0.001) compared to matured ciPTEC-U, whereas matured ciPTEC-U showed a more pronounced fibronectin I and laminin 5 gene expression (p<0.01 and p<0.05, respectively). Expression of the influx carrier Organic Cation Transporter 2 (OCT-2), and the efflux pumps P-glycoprotein (P-gp), Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) were confirmed in the three cell lines using real-time PCR and Western blotting. The activities of OCT-2 and P-gp were sensitive to specific inhibition in all models (p<0.001). The highest activity of MRP4 and BCRP was demonstrated in ciPTEC-U (p<0.05). Finally, active albumin reabsorption was highest in ciPTEC-T2 (p<0.001), while Na(+)-dependent phosphate reabsorption was most abundant in ciPTEC-U (p<0.01). In conclusion, ciPTEC established from human urine or kidney tissue display comparable functional PTEC specific transporters and physiological characteristics, providing ideal human tools for bioartificial kidney development

    Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane

    Full text link
    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney

    Layered argumentation for fuzzy automation controllers

    Get PDF
    We develop a layered argumentation system (LAS) for efficient implementation of Fuzzy automation controllers. LAS extends a logic based proposal of argumentation with subsumption concept and varying degree of confidences in beliefs. We show that this argumentation system can be used to model Fuzzy automation controllers. The argumentation system is based on a nonmonotonic logic, the computational complexity of which is known to be linear to the size of the knowledge base. LAS theories can also be mapped into RTL-VHDL (Register Transfer Level-VLSI Hardware Description Language) or RTL Verilog for very efficient hardware implementation of Fuzzy automation controllers
    corecore