19 research outputs found

    Invasive Microascus trigonosporus

    Get PDF
    Because of the high incidence of morbidity and mortality associated with invasive fungal infections, antifungal prophylaxis is often used in solid organ transplant recipients. However, this prophylaxis is not universally effective and may contribute to the selection of emerging, resistant pathogens. Here we present a rare case of invasive infection caused by Microascus trigonosporus species complex in a human, which developed during voriconazole prophylaxis in a lung transplant recipient. Nebulized liposomal amphotericin B was used in addition to systemic therapy in order to optimize antifungal drug exposure; this regimen appeared to reduce the patient’s fungal burden. Despite this apparent improvement, the patient’s pulmonary status progressively declined in the setting of multiple comorbidities, ultimately leading to respiratory failure and death

    Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations

    Get PDF
    Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed “sprinkles”. In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed “non-crystallographic branching”. Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. Statement of Significance: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems

    In brief

    Full text link

    Invasive Microascus trigonosporus Species Complex Pulmonary Infection in a Lung Transplant Recipient

    Full text link
    Because of the high incidence of morbidity and mortality associated with invasive fungal infections, antifungal prophylaxis is often used in solid organ transplant recipients. However, this prophylaxis is not universally effective and may contribute to the selection of emerging, resistant pathogens. Here we present a rare case of invasive infection caused by Microascus trigonosporus species complex in a human, which developed during voriconazole prophylaxis in a lung transplant recipient. Nebulized liposomal amphotericin B was used in addition to systemic therapy in order to optimize antifungal drug exposure; this regimen appeared to reduce the patient’s fungal burden. Despite this apparent improvement, the patient’s pulmonary status progressively declined in the setting of multiple comorbidities, ultimately leading to respiratory failure and death

    Climate Dependent Heat Triggered Opening Mechanism of Banksia Seed Pods

    Full text link
    International audienceHeat-triggered fruit opening and delayed release of mature seeds are widespread among plants in fire-prone ecosystems. Here, the material characteristics of the seed-containing follicles of Banksia attenuata (Proteaceae), which open in response to heat frequently caused by fire, are investigated. Material analysis reveals that long-term dimensional stability and opening temperatures of follicles collected across an environmental gradient increase as habitats become drier, hotter, and more fire prone. A gradual increase in the biaxial curvature of the hygroscopic valves provides the follicles in the driest region with the highest flexural rigidity. The irreversible deformation of the valves for opening is enabled via a temperature-dependent reduction of the elastic modulus of the innermost tissue layer, which then allows releasing the stresses previously generated by shrinkage of the fiber bundles in the adjacent layer during follicle drying. These findings illustrate the level of sophistication by which this species optimizes its fruit opening mechanism over a large distribution range with varying environmental conditions, and may not only have great relevance for developing biomimetic actuators, but also for elucidating the species' capacity to cope with climatic changes

    Comprehensive MR Evaluation of Renal Disease: Added Clinical Value of Quantified Renal Perfusion Values Over Single MR Angiography

    Full text link
    Purpose: To evaluate the diagnostic accuracy of quantified renal perfusion parameters in identifying and differentiating renovascular from renal parenchymal disease. Materials and Methods: In all, 27 patients underwent renal perfusion measurements on a 3.0 T magnetic resonance imaging (MRI) system. Imaging was performed with a saturation recovery TurboFLASH sequence (TR/TE 177/0.93 msec, flip angle 12 degrees, 5 slices/sec). All patients also underwent high-resolution MR angiography (MRA) (TR/TE 3.1/1.09, flip angle 23 degrees, spatial resolution 0.9 x 0.8 x 0.9 mm(3)). MR perfusion measurements were analyzed with a two-compartment model, quantifying the plasma flow (F(p))-a characteristic renal first-pass perfusion parameter. A receiver-operator characteristic analysis was used to determine the optimal threshold value for distinguishing normal and abnormal plasma flow values. Utilizing this cutoff, sensitivity and specificity of solitary MR perfusion measurements. MRA, and a diagnostic strategy combining the two were evaluated. Results: Quantified MR perfusion values yielded a sensitivity of 100% and a specificity of 85% utilizing the optimal plasma flow threshold value of 150 mL/100 mL/min, whereas single MRA achieved a sensitivity of 51.9% and a specificity of 90%. Combining both methods enabled improved detection of renovascular and renoparenchymal disease with a sensitivity of 96.3% and specificity of 90%. Conclusion: In distinction to MRA, quantified MR perfusion measurements allow for the detection of pure renal parenchymal disorders. The combination of MRA with these perfusion measurements suggests an algorithm by which parenchymal and renovascular diseases may be reliably distinguished and the hemodynamic significance of the latter reliably determined
    corecore