274 research outputs found
Superconducting and Magnetic Properties of Nb/Pd_1-xFe_x/Nb Triple Layers
The superconducting and magnetic properties of Nb/Pd_1-xFe_x/Nb triple layers
with constant Nb layer thickness d_Nb=200 A and different interlayer
thicknesses are investigated. The thickness dependence of the magnetization and
of the superconducting transition temperature shows that for small iron
concentration x the Pd_1-xFe_x layer is likely to be in the paramagnetic state
for very thin films whereas ferromagnetic order is established for x>=0.13. The
parallel critical field B_c2II(T) exhibits a crossover from two-dimensional
(2D) behavior where the Nb films are coupled across the interlayer, towards a
2D behavior of coupled Nb films with increasing d_PdFe or x. This 2D-2D
crossover allows a determination of the penetration depth xi_F of Cooper pairs
into the Pd_1-xFe_x layer as a function of x. For samples with a ferromagnetic
interlayer xi_ is found to be independent of x.Comment: 9 pages, 8 figure
First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites
Ellesmere Island, at the most northerly tip of Canada, possesses the highest
mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many
summits over 1000 m, high enough to place them above a stable low-elevation
thermal inversion that persists through winter darkness. Our group has studied
four mountains along the northwestern coast which have the additional benefit
of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small
robotic site testing stations at three sites, the highest of which is over 1600
m and within 8 degrees of the pole. Basic weather and sky clarity data for over
three years beginning in 2006 are presented here, and compared with available
nearby sea-level data and one manned mid-elevation site. Our results point to
coastal mountain sites experiencing good weather: low median wind speed, high
clear-sky fraction and the expectation of excellent seeing. Some practical
aspects of access to these remote locations and operation and maintenance of
equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS
Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones
This article focuses on techniques for acoustic noise reduction, signal
filters and source reconstruction. For noise reduction, bandpass filters and
cross correlations are found to be efficient and fast ways to improve the
signal to noise ratio and identify a possible neutrino-induced acoustic signal.
The reconstruction of the position of an acoustic point source in the sea is
performed by using small-volume clusters of hydrophones (about 1 cubic meter)
for direction reconstruction by a beamforming algorithm. The directional
information from a number of such clusters allows for position reconstruction.
The algorithms for data filtering, direction and position reconstruction are
explained and demonstrated using simulated data.Comment: 7 pages, 13 figure
Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu
We present a general scheme for analyzing the structure and mobility of
dislocations based on solutions of the Peierls-Nabarro model with a two
component displacement field and restoring forces determined from the ab-initio
generalized stacking fault energetics (ie., the so-called -surface).
The approach is used to investigate dislocations in L1 TiAl and CuAu;
predicted differences in the unit dislocation properties are explicitly related
with features of the -surface geometry. A unified description of
compact, spread and split dislocation cores is provided with an important
characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November
199
Thirty Meter Telescope Site Testing I: Overview
As part of the conceptual and preliminary design processes of the Thirty
Meter Telescope (TMT), the TMT site testing team has spent the last five years
measuring the atmospheric properties of five candidate mountains in North and
South America with an unprecedented array of instrumentation. The site testing
period was preceded by several years of analyses selecting the five candidates,
Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in
Baja California, Mexico and the 13 North (13N) site on Mauna Kea, Hawaii. Site
testing was concluded by the selection of two remaining sites for further
consideration, Armazones and Mauna Kea 13N. It showed that all five candidates
are excellent sites for an extremely large astronomical observatory and that
none of the sites stands out as the obvious and only logical choice based on
its combined properties. This is the first article in a series discussing the
TMT site testing project.Comment: Accepted for publication in PASP, April 2009 issu
- …