293 research outputs found

    General relativity histories theory I: The spacetime character of the canonical description

    Full text link
    The problem of time in canonical quantum gravity is related to the fact that the canonical description is based on the prior choice of a spacelike foliation, hence making a reference to a spacetime metric. However, the metric is expected to be a dynamical, fluctuating quantity in quantum gravity. We show how this problem can be solved in the histories formulation of general relativity. We implement the 3+1 decomposition using metric-dependent foliations which remain spacelike with respect to all possible Lorentzian metrics. This allows us to find an explicit relation of covariant and canonical quantities which preserves the spacetime character of the canonical description. In this new construction, we also have a coexistence of the spacetime diffeomorphisms group, and the Dirac algebra of constraints.Comment: 23 pages, submitted to Class. Quant. Gra

    Histories quantisation of parameterised systems: I. Development of a general algorithm

    Full text link
    We develop a new algorithm for the quantisation of systems with first-class constraints. Our approach lies within the (History Projection Operator) continuous-time histories quantisation programme. In particular, the Hamiltonian treatment (either classical or quantum) of parameterised systems is characterised by the loss of the notion of time in the space of true degrees of freedom (i.e. the `problem of time'). The novel temporal structure of the HPO theory (two laws of time transformation that distinguish between the temporal logical structure and the dynamics) persists after the imposition of the constraints, hence the problem of time does not arise. We expound the algorithm for both the classical and quantum cases and apply it to simple models.Comment: 34 pages, Late

    The cold frontal depression that affected the area of Cyprus between 28 and 29 January 2008

    Get PDF
    The baroclinic depression that affected the area of Cyprus during the cold period, between 28 and 29 January 2008 was thoroughly studied and is presented in the present paper. A small perturbation on a northwesterly flow to the north of Cyprus has initiated the generation of the depression and in 24 h this developed into a deep baroclinic system. This depression was associated with intense weather phenomena, such as heavy thunderstorms with hail and near gale force winds. Strong cold advection resulted in a significant temperature decrease; precipitation even in lower altitudes was in the form of snow, while the accumulated rainfall corresponded to the 25% of the monthly normal. January 2008 is considered as a dry month, despite the fact that, on the average, January is considered as the wettest month of the year. In this study, the evolution and development of the depression was investigated from synoptic, dynamic, energetic and thermodynamic perspectives, in order to enhance our knowledge on the life cycle and behaviour of similar depressions over the area with extreme characteristics

    Canonical Lagrangian Dynamics and General Relativity

    Full text link
    Building towards a more covariant approach to canonical classical and quantum gravity we outline an approach to constrained dynamics that de-emphasizes the role of the Hamiltonian phase space and highlights the role of the Lagrangian phase space. We identify a "Lagrangian one-form" to replace the standard symplectic one-form, which we use to construct the canonical constraints and an associated constraint algebra. The method is particularly useful for generally covariant systems and systems with a degenerate canonical symplectic form, such as Einstein Cartan gravity, to which we apply the method explicitly. We find that one can demonstrate the closure of the constraints without gauge fixing the Lorentz group or introducing primary constraints on the phase space variables. Finally, using geometric quantization techniques, we briefly discuss implications of the formalism for the quantum theory.Comment: Version published in Classical and Quantum Gravity. Significant content and references adde

    Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery

    Get PDF
    Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. Design A parallel metabonomic (1H NMR spectroscopy) and gut bacterial (16S rRNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared to women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. Results Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. Urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (P=0.001) and was also elevated in urine of neonates born from these mothers (P=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. Conclusion Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further

    First-Trimester Circulating 25-Hydroxyvitamin D Levels and Development of Gestational Diabetes Mellitus

    Get PDF
    OBJECTIVE-To investigate the association between first-trimester maternal serum levels of 25-hydroxyvitamin D (25-OH-D) as measured by liquid chromatography-tandem mass spectrometry and development of gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS-We conducted a case-control study involving 248 women in the first-trimester of pregnancy, 90 of whom developed GDM and 158 remained normoglycemic. RESULTS-Although booking 25-OH-D levels correlated negatively with 2-h glucose postoral glucose tolerance test and positively with HDL cholesterol, as well as with ethnicity, obesity, and smoking (all P < 0.05), there were no statistically significant differences in baseline maternal mean 25-OH-D levels between those who subsequently developed GDM, 18.9 ng/mL (SD 10.7) and those who remained normoglycemic, 19.0 ng/mL (10.7) (P = 0.874), even after adjustment for possible confounders including sampling month (P = 0.784). CONCLUSIONS-Our large and well-phenotyped prospective study did not find evidence of an association between first-trimester maternal levels of 25-OH-D and subsequent development of GDM

    Quantum correlation functions and the classical limit

    Full text link
    We study the transition from the full quantum mechanical description of physical systems to an approximate classical stochastic one. Our main tool is the identification of the closed-time-path (CTP) generating functional of Schwinger and Keldysh with the decoherence functional of the consistent histories approach. Given a degree of coarse-graining in which interferences are negligible, we can explicitly write a generating functional for the effective stochastic process in terms of the CTP generating functional. This construction gives particularly simple results for Gaussian processes. The formalism is applied to simple quantum systems, quantum Brownian motion, quantum fields in curved spacetime. Perturbation theory is also explained. We conclude with a discussion on the problem of backreaction of quantum fields in spacetime geometry.Comment: 30 pages, latex; minor changes, added some explanations and refeence

    Quantising on a category

    Full text link
    We review the problem of finding a general framework within which one can construct quantum theories of non-standard models for space, or space-time. The starting point is the observation that entities of this type can typically be regarded as objects in a category whose arrows are structure-preserving maps. This motivates investigating the general problem of quantising a system whose `configuration space' (or history-theory analogue) is the set of objects \Ob\Q in a category \Q. We develop a scheme based on constructing an analogue of the group that is used in the canonical quantisation of a system whose configuration space is a manifold QG/HQ\simeq G/H, where GG and HH are Lie groups. In particular, we choose as the analogue of GG the monoid of `arrow fields' on \Q. Physically, this means that an arrow between two objects in the category is viewed as an analogue of momentum. After finding the `category quantisation monoid', we show how suitable representations can be constructed using a bundle (or, more precisely, presheaf) of Hilbert spaces over \Ob\Q. For the example of a category of finite sets, we construct an explicit representation structure of this type.Comment: To appear in a volume dedicated to the memory of James Cushin

    Consistent thermodynamics for spin echoes

    Full text link
    Spin-echo experiments are often said to constitute an instant of anti-thermodynamic behavior in a concrete physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment of the effect should take into account the correlations between the spin and translational degrees of freedom of the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporates both spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a faithful measure of entropy change.Comment: 15 pages, 2 figs. Changed figures, version to appear in PR
    corecore