1,240 research outputs found

    The causal structure of dynamical charged black holes

    Full text link
    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot saymore about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.Comment: 23 pages, 23 figure

    Relationship between temporary emotion of students and performance in learning through comparing facial expression analytics

    Get PDF
    This paper presents a study on temporary emotion of students and their performance related to learning activities. This paper elucidates different kinds of facial expressions elicited during the activities: quiz and a movie trailer with the help of existing facial expression analyzing applications. The user’s expressions are recorded as video while watching the movie trailer and doing the quiz. The video is processed by different applications which gives the score for different emotions. The results obtained are studied to find which emotion is mostly prevalent among the user in different situations. From this study, it is shown that students experience seemingly different emotions during the activity. The emotions they portrayed were confusion, sadness, anger and neutral. This study explores the use of affective computing for further comprehension of students’ emotion in learning environment

    Dynamical formation and evolution of (2+1)-dimensional charged black holes

    Full text link
    In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.Comment: 40 pages, 15 figure

    TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?

    Get PDF
    Since the proposition of Quality of Service architectures by the IETF, the interaction between TCP and the QoS services has been intensively studied. This paper proposes to look forward to the results obtained in terms of TCP throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service and to present an overview of the different proposals to solve the problem. It has been demonstrated that the standardized IETF DiffServ conditioners such as the token bucket color marker and the time sliding window color maker were not good TCP traffic descriptors. Starting with this point, several propositions have been made and most of them presents new marking schemes in order to replace or improve the traditional token bucket color marker. The main problem is that TCP congestion control is not designed to work with the AF service. Indeed, both mechanisms are antagonists. TCP has the property to share in a fair manner the bottleneck bandwidth between flows while DiffServ network provides a level of service controllable and predictable. In this paper, we build a classification of all the propositions made during these last years and compare them. As a result, we will see that these conditioning schemes can be separated in three sets of action level and that the conditioning at the network edge level is the most accepted one. We conclude that the problem is still unsolved and that TCP, conditioned or not conditioned, remains inappropriate to the DiffServ/AF service

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    Dynamics of false vacuum bubbles in Brans-Dicke theory

    Full text link
    We study the dynamics of false vacuum bubbles in the Brans-Dicke theory of gravity by using the thin shell or thin wall approximation. We consider a false vacuum bubble that has a different value for the Brans-Dicke field between the inside false vacuum region and the outside true vacuum region. Within a certain limit of field values, the difference of field values makes the effective tension of the shell negative. This allows new expanding false vacuum bubbles to be seen by the outside observer, which are disallowed in Einstein gravity.Comment: 29 pages, 20 figure

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions

    Full text link
    We explicitly prove the horizon-entropy increase law for both causal and quasi-locally defined horizons in scalar-tensor and f(R)f(R) gravity theories. Contrary to causal event horizons, future outer trapping horizons are not conformally invariant and we provide a modification of trapping horizons to complete the proof, using the idea of generalised entropy. This modification means they are no longer foliated by marginally outer trapped surfaces but fixes the location of the horizon under a conformal transformation. We also discuss the behaviour of horizons in "veiled" general relativity and show, using this new definition, how to locate cosmological horizons in flat Minkowski space with varying units, which is physically identified with a spatially flat FLRW spacetime.Comment: 23 page
    • 

    corecore