4,805 research outputs found
Case Report:Triceps Tendon Avulsion: A Rare Injury
Background: Triceps tendon avulsion is one of the rare tendinous injuries. Such injuries can easily be missed, and should be kept as a differential diagnosis in all patients who present with pain and swelling at the back of the elbow after a traumatic event.Case Details: We present a case of triceps tendon avulsion which was missed in the initial workup by a local practitioner. Careful physical examination and evaluation of the X-rays clinched the diagnosis. The patient was treated surgically by transosseous suture technique using the Krakow method. The end result was a good range of movement and a power equal to the uninjured side. A high index of suspicion, physical examination seeking a palpable gap, and search for a ‘flake’ fracture on lateral radiographs will help make the diagnosis of triceps avulsion. Early recognition of these injuries and prompt intervention are the cornerstones of a successful outcome. A second examination after a few days, when the swelling has reduced, should be the standard in doubtful cases or during any unclear joint injury. We recommend a primary repair through a transosseous suture technique using Krakow method for optimal results.Keywords: Triceps avulsion, Krakow, Ethibon
Recommended from our members
Employing Program Semantics for Malware Detection
In recent years, malware has emerged as a critical security threat. Additionally, malware authors continue to embed numerous anti–detection features to evade existing malware detection approaches. Against this advanced class of malicious programs, dynamic behavior–based malware detection approaches outperform the traditional signature–based approaches by neutralizing the effects of obfuscation and morphing techniques. The majority of dynamic behavior detectors rely on system–calls to model the infection and propagation dynamics of malware. However, these approaches do not account an important anti–detection feature of modern malware, i.e., system–call injection attack. This attack allows the malicious binaries to inject irrelevant and independent system–calls during the program execution thus modifying the execution sequences defeating the existing system–call based detection. To address this problem, we propose an evasion–proof solution that is not vulnerable to system–call injection attacks. Our proposed approach precisely characterizes the program semantics using Asymptotic Equipartition Property (AEP) mainly applied in information theoretic domain. The AEP allows us to extract the information–rich call sequences that are further quantified to detect the malicious binaries. Furthermore, the proposed detection model is less vulnerable to call–injection attacks as the discriminating components are not directly visible to malware authors. This particular characteristic of proposed approach hampers a malware author’s aim of defeating our approach. We run a thorough set of experiments to evaluate our solution and compare it with existing system-call based malware detection techniques. The results demonstrate that the proposed solution is effective in identifying real malware instances
Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding
This study was aimed at developing a protocol for increasing the number of generation cycles per year in chickpea (Cicer arietinum L.). Six accessions, two each from early (JG 11 and JG 14), medium (ICCV 10 and JG 16), and late (CDC-Frontier and C 235) maturity groups, were
used. The experiment was conducted for two years under glasshouse conditions. The photoperiod was extended to induce early flowering and immature seeds were germinated
to further reduce generation cycle time. Compared to control, artificial light caused a reduction in flowering time by respectively 8–19, 7–16, and 11–27 days in early-, medium-, and late-maturing accessions. The earliest stage of immature seed able to germinate was 20–23 days after anthesis in accessions of different maturity groups. The time period between germination and the earliest stage of immature seed suitable for germination was considered one generation cycle and spanned respectively 43–60, 44–64, and 52–79 days in early-, medium-, and late-maturing accessions. However, the late-maturing accession CDCFrontier
could not be advanced further after three generation cycles owing to the strong influence of photoperiod and temperature. The mean total number of generations produced
per year were respectively 7, 6.2, and 6 in early-, medium-, and late-maturing accessions. These results have encouraging implications for breeding programs: rapid progression toward homozygosity, development of mapping populations, and reduction in time, space
and resources in cultivar development (speed breeding)
The Hard X-ray emission of the blazar PKS 2155--304
The synchrotron peak of the X-ray bright High Energy Peaked Blazar (HBL) PKS
2155304 occurs in the UV-EUV region and hence its X-ray emission (0.6--10
keV) lies mostly in the falling part of the synchrotron hump. We aim to study
the X-ray emission of PKS 2155304 during different intensity states in
20092014 using XMMNewton satellite. We studied the spectral curvature of
all of the observations to provide crucial information on the energy
distribution of the non-thermal particles. Most of the observations show
curvature or deviation from a single power-law and can be well modeled by a log
parabola model. In some of the observations, we find spectral flattening after
6 keV. In order to find the possible origin of the X-ray excess, we built the
Multi-band Spectral Energy distribution (SED). We find that the X-ray excess in
PKS 2155--304 is difficult to fit in the one zone model but, could be easily
reconciled in the spine/layer jet structure. The hard X-ray excess can be
explained by the inverse Comptonization of the synchrotron photons (from the
layer) by the spine electrons.Comment: 14 pages, 7 Figures, Accepted for publication in Ap
Recommended from our members
Scale Inside-Out: Rapid Mitigation of Cloud DDoS Attacks
The distributed denial of service (DDoS) attacks in cloud computing requires quick absorption of attack data. DDoS attack mitigation is usually achieved by dynamically scaling the cloud resources so as to quickly identify the onslaught features to combat the attack. The resource scaling comes with an additional cost which may prove to be a huge disruptive cost in the cases of longer, sophisticated, and repetitive attacks. In this work, we address an important problem, whether the resource scaling during attack, always result in rapid DDoS mitigation? For this purpose, we conduct real-time DDoS attack experiments to study the attack absorption and attack mitigation for various target services in the presence of dynamic cloud resource scaling. We found that the activities such as attack absorption which provide timely attack data input to attack analytics, are adversely compromised by the heavy resource usage generated by the attack. We show that the operating system level local resource contention, if reduced during attacks, can expedite the overall attack mitigation. The attack mitigation would otherwise not be completed by the dynamic scaling of resources alone. We conceived a novel relation which terms “Resource Utilization Factor” for each incoming request as the major component in forming the resource contention. To overcome these issues, we propose a new “Scale Inside-out” approach which during attacks, reduces the “Resource Utilization Factor” to a minimal value for quick absorption of the attack. The proposed approach sacrifices victim service resources and provides those resources to mitigation service in addition to other co-located services to ensure resource availability during the attack. Experimental evaluation shows up to 95 percent reduction in total attack downtime of the victim service in addition to considerable improvement in attack detection time, service reporting time, and downtime of co-located services
Recommended from our members
DDoS victim service containment to minimize the internal collateral damages in cloud computing
Recent Distributed Denial of Service (DDoS) attacks on cloud services demonstrate new attack effects, including collateral and economic losses. In this work, we show that DDoS mitigation methods may not provide the expected timely mitigation due to the heavy resource outage created by the attacks. We observe an important Operating System (OS) level internal collateral damage, in which the other critical services are also affected. We formulate the DDoS mitigation problem as an OS level resource management problem. We argue that providing extra resources to the victim's server is only helpful if we can ensure the availability of other services. To achieve these goals, we propose a novel resource containment approach to enforce the victim's resource limits. Our real-time experimental evaluations show that the proposed approach results in reduction in the attack reporting time and victim service downtime by providing isolated and timely resources to ensure availability of other critical services
Multi-band optical-NIR variability of blazars on diverse timescales
To search for optical variability on a wide range of timescales, we have
carried out photometric monitoring of two flat spectrum radio quasars, 3C 454.3
and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting
remarkably high activity and pronounced variability at all wavelengths. CCD
magnitudes in B, V, R and I pass-bands were determined for 7000 new
optical observations from 114 nights made during 2011 - 2014, with an average
length of 4 h each, at seven optical telescopes: four in Bulgaria, one
in Greece, and two in India. We measured multiband optical flux and colour
variations on diverse timescales. Discrete correlation functions were computed
among B, V, R, and I observations, to search for any time delays. We found weak
correlations in some cases with no significant time lags. The structure
function method was used to estimate any characteristic time-scales of
variability. We also investigated the spectral energy distribution of the three
blazars using B, V, R, I, J and K pass-band data. We found that the sources
almost always follows a bluer-when-brighter trend. We discuss possible physical
causes of the observed spectral variability.Comment: Accepted for publication in MNRAS, 16 pages, 11 figures, 5 tables,
plus supplementary material containing additional figures and tables (please
contact authors for it
- …