1,563 research outputs found

    Topology, Locality, and Aharonov-Bohm Effect with Neutrons

    Get PDF
    Recent neutron interferometry experiments have been interpreted as demonstrating a new topological phenomenon similar in principle to the usual Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the electron's charge. We show that the new phenomenon, called Scalar AB (SAB) effect, follows from an ordinary local interaction, contrary to the usual AB effect, and we argue that the SAB effect is not a topological effect by any useful definition. We find that SAB actually measures an apparently novel spin autocorrelation whose operator equations of motion contain the local torque in the magnetic field. We note that the same remarks apply to the Aharonov-Casher effect.Comment: 9 page

    A History of the Improvement of Internet Protocols Over Satellites using ACTS

    Get PDF
    This paper outlines the main results of a number of ACTS experiments on the efficacy of using standard Internet protocols over long-delay satellite channels. These experiments have been jointly conducted by NASA\u27s Glenn Research Center and Ohio University over the last six years. The focus of our investigations has been the impact of long-delay networks with non-zero bit-error rates on the performance of the suite of Internet protocols. In particular, we have focused on the most widely used transport protocol, the Transmission Control Protocol (TCP), as well as several application layer protocols. This paper presents our main results, as well as references to more verbose discussions of our experiments

    Classical and Quantum Interaction of the Dipole

    Get PDF
    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Four new experiments are proposed, three of which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte

    Validation of a clinical and genetic model for predicting severe COVID-19

    Get PDF
    Using nested case-control data from the Lifelines COVID-19 cohort, we undertook a validation study of a clinical and genetic model to predict the risk of severe COVID-19 in people with confirmed COVID-19 and in people with confirmed or self-reported COVID-19. The model performed well in terms of discrimination of cases and controls for all ages (area under the receiver operating characteristic curve (AUC) = 0.680 for confirmed COVID-19 and AUC = 0.689 for confirmed and self-reported COVID-19) and in the age group in which the model was developed (50 years and older; AUC = 0.658 for confirmed COVID-19 and AUC = 0.651 for confirmed and self-reported COVID-19). There was no evidence of over- or under-dispersion of risk scores but there was evidence of overall over-estimation of risk in all analyses (all P < 0.0001). In the light of large numbers of people worldwide remaining unvaccinated and continuing uncertainty regarding vaccine efficacy over time and against variants of concern, identification of people at high risk of severe COVID-19 may encourage the uptake of vaccinations (including boosters) and the use of non-pharmaceutical inventions

    Heralded quantum steering over a high-loss channel

    Get PDF
    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8±0.114.8\pm0.1 dB of added loss, equivalent to approximately 8080 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure

    Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects

    Full text link
    We establish systematic consolidation of the Aharonov-Bohm and Aharonov-Casher effects including their scalar counterparts. Their formal correspondences in acquiring topological phases are revealed on the basis of the gauge symmetry in non-simply connected spaces and the adiabatic condition for the state of magnetic dipoles. In addition, investigation of basic two-body interactions between an electric charge and a magnetic dipole clarifies their appropriate relative motions and discloses physical interrelations between the effects. Based on the two-body interaction, we also construct an exact microscopic description of the Aharonov-Bohm effect, where all the elements are treated on equal footing, i.e., magnetic dipoles are described quantum-mechanically and electromagnetic fields are quantized. This microscopic analysis not only confirms the conventional (semiclassical) results and the topological nature but also allows one to explore the fluctuation effects due to the precession of the magnetic dipoles with the adiabatic condition relaxed
    • …
    corecore