21 research outputs found

    White-etching matter in bearing steel. Part II: Distinguishing cause and effect in bearing steel failure

    Get PDF
    The premature failure of large bearings of the type used in wind turbines, possibly through a mechanism called “white-structure flaking”, has triggered many studies of microstructural damage associated with “white-etching areas” created during rolling contact fatigue, although whether they are symptoms or causes of failure is less clear. Therefore, some special experiments have been conducted to prove that white-etching areas are the consequence, and not the cause, of damage. By artificially introducing a fine dispersion of microcracks in the steel through heat treatment and then subjecting the sample to rolling contact fatigue, manifestations of hard white-etching matter have been created to a much greater extent than samples similarly tested without initial cracks. A wide variety of characterization tools has been used to corroborate that the white areas thus created have the same properties as reported observations on real bearings. Evidence suggests that the formation mechanism of the white-etching regions involves the rubbing and beating of the free surfaces of cracks, debonded inclusions, and voids under repeated rolling contact. It follows that the focus in avoiding early failure should be in enhancing the toughness of the bearing steel in order to avoid the initial microscopic feature event.Funding by CONACyT, the Cambridge Overseas Trust, and the Roberto Rocca Education Programme is highly appreciated and acknowledged.This is the accepted manuscript version. The final published version is available from Springer at http://link.springer.com/article/10.1007%2Fs11661-014-2431-x

    Model Describing Material-Dependent Deformation Behavior in High-Velocity Metal Forming Processes

    No full text
    A constitutive model for rate-dependent and thermomechanically coupled plasticity at finite strains is presented. The plasticity model is based on a J(2) model and rate-dependent behavior is included by use of a Perzyna-type formulation. Adiabatic heating effects are handled in a consistent way and not, as is a common assumption, through a constant conversion of the internal work rate into rate of heating. The conversion factor is instead derived from thermodynamic considerations. The stored energy is assumed to be a function of a single internal variable which differs from the effective plastic strain. This allows a thermodynamically consistent formulation to be obtained which, as shown, can be calibrated by use of simple procedures. Choosing 100Cr6 steel in two differently heat treated conditions as prototype material, experimental tests are performed, enabling the model to be calibrated. Significant differences in deformation behavior are noted as the differently heat treated specimens are compared. In addition, the local stress-updating procedure is reduced to a single scalar equation, permitting a very efficient numerical implementation of the model. The constitutive formulation proposed was employed in an explicit finite element solver, illustrative simulations of a high-velocity metal forming process being performed to demonstrate the capabilities of the model and certain characteristic traits of the materials that were studied

    Microstructure of surface zones subjected to high-velocity parting-off

    No full text
    A hydraulic high-velocity pressing machine with a parting-off tool was used for adiabatic cutting with impact velocities ranging from 5 to 10 m/s. In this study the associated fracture mechanisms and microstructures of three different materials (100Cr6, 100CrMn6 and C56) in the form of wire or bar were investigated. It was concluded that the parting-off is initiated through a shearing effect resulting in ductile shear fracture being responsible for the cutting. In all of the samples microcracks were found in the severely deformed region around the cut, which became larger with increasing sample diameter. Evidence of heating was not observed in the cut zone of samples having 6 mm diameter. However, for samples with a diameter of 70 mm and above, a white-etching band could be found, indicating that the temperature had increased considerably in this region. Analysis of the fracture surfaces using scanning optical microscopy showed that the fracture mode had mostly been ductile shear, with exception of the largest samples where some evidence of tensile fracture could be observed
    corecore