259 research outputs found

    A role for a novel centrosome cycle in asymmetric cell division

    Get PDF
    Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a “dominant centrosome.” This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle–cortex interactions refine this alignment

    Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase

    Get PDF
    Spinning disc confocal microscopy of LLCPK1 cells expressing GFP-tubulin was used to demonstrate that microtubules (MTs) rapidly elongate to the cell cortex after anaphase onset. Concurrently, individual MTs are released from the centrosome and the centrosome fragments into clusters of MTs. Using cells expressing photoactivatable GFP-tubulin to mark centrosomal MT minus ends, a sevenfold increase in MT release in anaphase is documented as compared with metaphase. Transport of both individually released MTs and clusters of MTs is directionally biased: motion is directed away from the equatorial region. Clusters of MTs retain centrosomal components at their focus and the capacity to nucleate MTs. Injection of mRNA encoding nondegradable cyclin B blocked centrosome fragmentation and the stimulation of MT release in anaphase despite allowing anaphase-like chromosome segregation. Biased MT release may provide a mechanism for MT-dependent positioning of components necessary for specifying the site of contractile ring formation

    Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting?

    Get PDF
    The highly polarized architecture of neurons is important for their function. Experimental data based on dominant-negative approaches suggest that the tumor suppressor adenomatous polyposis coli (APC), a regulator of Wnt signaling and the cytoskeleton, regulates polarity of neuroectodermal precursors and neurons, helping specify one neurite as the axon, promoting its outgrowth, and guiding axon pathfinding. However, such dominant-negative approaches might affect processes in which APC is not essential. We completely removed both APCs from Drosophila melanogaster larval neural precursors and neurons, testing whether APCs play universal roles in neuronal polarity. Surprisingly, APCs are not essential for asymmetric cell division or the stereotyped division axis of central brain (CB) neuroblasts, although they do affect cell cycle progression and spindle architecture. Likewise, CB, lobular plug, and mushroom body neurons do not require APCs for polarization, axon outgrowth, or, in the latter two cases, axon targeting. These data suggest that proposed cytoskeletal roles for APCs in mammals should be reassessed using loss of function tools

    A continuous model for microtubule dynamics with catastrophe, rescue and nucleation processes

    Full text link
    Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in vitro and in vivo. We propose a general mathematical model that accounts for the growth, catastrophe, rescue and nucleation processes in the polymerization of microtubules from tubulin dimers. Our model is an extension of various mathematical models developed earlier formulated in order to capture and unify the various aspects of tubulin polymerization including the dynamic instability, growth of microtubules to saturation, time-localized periods of nucleation and depolymerization as well as synchronized oscillations exhibited by microtubules under various experimental conditions. Our model, while attempting to use a minimal number of adjustable parameters, covers a broad range of behaviors and has predictive features discussed in the paper. We have analyzed the resultant behaviors of the microtubules changing each of the parameter values at a time and observing the emergence of various dynamical regimes.Comment: 25 pages, 12 figure

    The production of less harmful and less toxic sparklers in an experiment for school students

    Get PDF
    In this article, a new and simple way of producing sparklers is presented as a school experiment. These sparklers are more environmentally friendly and less health threatening than sparklers produced with existing preparation methods. The problem of conventional sparklers is the toxicity of barium nitrate, which is used as the oxidizer. The substitution of this oxidizer with strontium nitrate and also the reduction of the weight proportion makes the new mixture less dangerous and less toxic. Various tests for the categorization of high-energetic materials show that the newly developed sparklers are not classified as explosives. Furthermore, the tests demonstrate that the newly developed sparklers are not as dangerous as commercial sparklers. Due to their lower health risk, these new sparklers are well suited for use in school education. In addition, expenditure for this experiment is low and integrating it into the upper secondary level curriculum is easy. Sparklers are an impressive example of redox reactions from everyday life. The experiment is a best-practice application for chemistry education, incorporating current results of chemistry research

    Improved green-light-emitting pyrotechnic formulations based on tris(2,2,2-trinitroethyl)borate and boron carbide

    Get PDF
    Green-light-emitting pyrotechnic compositions based on tris(2,2,2-trinitroethyl)borate (TNEB) and boron carbide have been investigated. The best performing formulations were found to be insensitive to various ignition stimuli, and exhibited very high spectral purities and luminosities compared to previously reported green-light-emitting formulations

    Comparison of Functionalized Lithium Dihydrobis(azolyl)borates with Their Corresponding Azolates as Environmentally Friendly Red Pyrotechnic Coloring Agents

    Get PDF
    The recent awareness of the impact of strontium on health has stimulated research efforts on lithium‐based red pyrotechnic colorants. We have previously shown lithium dihydrobis(azolyl)borates to be promising candidates due to their favorable adjustment to a reductive and low‐temperature flame atmosphere. These compounds are assumed to be sufficiently stable only if the pKa values of the heterocycles are between 5 and 20. Apart from their acidities, functionalization of 1H‐tetrazole and 1H‐pyrazole with nitro or amino groups, respectively, tailors the oxygen balances of the resulting Lewis acid base adducts to enhance the fuel‐rich flame environment or to make them oxidizing agents. This work determines whether the lithium salts of dihydrobis(3‐nitropyrazol‐1‐yl)borate and dihydrobis(5‐aminotetrazol‐1‐yl)borate are suitable replacements for strontium‐containing color imparters. Furthermore, the influence of potentially green‐light‐producing boron is evaluated by comparing the emissions of the lithium borates and the corresponding lithium azolates

    Original CIN: reviewing roles for APC in chromosome instability

    Get PDF
    You may have seen the bumper sticker “Eve was framed.” Thousands of years of being blamed for original sin and still many wonder, where's the evidence? Today, the tumor suppressor adenomatous polyposis coli (APC) may have the same complaint about accusations of a different type of CIN, chromosome instability. A series of recent papers, including three in this journal, propose that loss of APC function plays an important role in the CIN seen in many colon cancer cells. However, a closer look reveals a complex story that raises more questions than answers

    Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting?

    Get PDF
    The highly polarized architecture of neurons is important for their function. Experimental data based on dominant-negative approaches suggest that the tumor suppressor adenomatous polyposis coli (APC), a regulator of Wnt signaling and the cytoskeleton, regulates polarity of neuroectodermal precursors and neurons, helping specify one neurite as the axon, promoting its outgrowth, and guiding axon pathfinding. However, such dominant-negative approaches might affect processes in which APC is not essential. We completely removed both APCs from Drosophila melanogaster larval neural precursors and neurons, testing whether APCs play universal roles in neuronal polarity. Surprisingly, APCs are not essential for asymmetric cell division or the stereotyped division axis of central brain (CB) neuroblasts, although they do affect cell cycle progression and spindle architecture. Likewise, CB, lobular plug, and mushroom body neurons do not require APCs for polarization, axon outgrowth, or, in the latter two cases, axon targeting. These data suggest that proposed cytoskeletal roles for APCs in mammals should be reassessed using loss of function tools

    A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction

    Get PDF
    APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions
    corecore