266 research outputs found

    Two-Dimensional Bosonization from Variable Shifts in the Path Integral

    Get PDF
    A method to perform bosonization of a fermionic theory in (1+1) dimensions in a path integral framework is developed. The method relies exclusively on the path integral property of allowing variable shifts, and does not depend on the explicit form of Greens functions. Two examples, the Schwinger model and the massless Thirring model, are worked out.Comment: 4 page

    Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment

    Get PDF
    We present a quenched lattice calculation of the lowest order (alpha^2) hadronic contribution to the anomalous magnetic moment of the muon which arises from the hadronic vacuum polarization. A general method is presented for computing entirely in Euclidean space, obviating the need for the usual dispersive treatment which relies on experimental data for e^+e^- annihilation to hadrons. While the result is not yet of comparable accuracy to those state-of-the-art calculations, systematic improvement of the quenched lattice computation to this level of accuracy is straightforward and well within the reach of present computers. Including the effects of dynamical quarks is conceptually trivial, the computer resources required are not.Comment: 12 pages, including two figures. Added reference and footnote Replaced with published version; minor changes asked for by referees and minor deletions to stay within page limi

    Three-loop QCD corrections and b-quark decays

    Full text link
    We present three-loop (NNNLO) corrections to the heavy-to-heavy quark transitions in the limit of equal initial and final quark masses. In analogy with the previously found NNLO corrections, the bulk of the result is due to the beta_0^2 alpha_s^3 corrections. The remaining genuine three-loop effects for the semileptonic b --> c decays are estimated to increase the decay amplitude by 0.2(2)%. The perturbative series for the heavy-heavy axial current converges very well.Comment: 5 page

    On the Renormalizability of Theories with Gauge Anomalies

    Full text link
    We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the non-perturbative divergences that appear in fermionic Green's functions of both models, we show that the "tree level" photon propagator is ill-defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one loop level, defining it in a consistent and semi-perturbative sense that we propose in this paper.Comment: Final version, new title and abstract, introduction and conclusion rewritten, detailed semiperturbative discussion included, references added; to appear in International Journal of Modern Physics

    Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints

    Get PDF
    Constraints on the parameters in the one- and two-loop pion-pion scattering amplitudes of standard chiral perturbation theory are obtained from explicitly crossing-symmetric sum rules. These constraints are based on a matching of the chiral amplitudes and the physical amplitudes at the symmetry point of the Mandelstam plane. The integrals over absorptive parts appearing in the sum rules are decomposed into crossing-symmetric low- and high-energy components and the chiral parameters are finally related to high-energy absorptive parts. A first application uses a simple model of these absorptive parts. The sensitivity of the results to the choice of the energy separating high and low energies is examined with care. Weak dependence on this energy is obtained as long as it stays below ~560 MeV. Reliable predictions are obtained for three two-loop parameters.Comment: 23 pages, 4 figures in .eps files, Latex (RevTex), our version of RevTex runs under Latex2.09, submitted to Phys. Rev. D,minor typographical corrections including the number at the end of the abstract, two sentences added at the end of Section 5 in answer to a referee's remar

    Skyrmions from a Born-Infeld Action

    Get PDF
    We consider a geometrically motivated Skyrme model based on a general covariant kinetic term proposed originally by Born and Infeld. We introduce this new term by generalizing the Born-Infeld action to a non-abelian SU(2)SU(2) gauge theory and by using the hidden gauge symmetry formalism. The static properties of the Skyrmion are then analyzed and compared with other Skyrme-like models.Comment: 11 pages, 4 figures (not included), revtex v3, LAVAL-PHY-11-9

    A gauge invariant and string independent fermion correlator in the Schwinger model

    Get PDF
    We introduce a gauge invariant and string independent two-point fermion correlator which is analyzed in the context of the Schwinger model (QED_2). We also derive an effective infrared worldline action for this correlator, thus enabling the computation of its infrared behavior. Finally, we briefly discuss possible perspectives for the string independent correlator in the QED_3 effective models for the normal state of HTc superconductors.Comment: 14 pages, LaTe

    Bosonization in d=2 from finite chiral determinants with a Gauss decomposition

    Get PDF
    We show how to bosonize two-dimensional non-abelian models using finite chiral determinants calculated from a Gauss decomposition. The calculation is quite straightforward and hardly more involved than for the abelian case. In particular, the counterterm AAˉA\bar A, which is normally motivated from gauge invariance and then added by hand, appears naturally in this approach.Comment: 4 pages, Revte

    Generalizations of Yang-Mills Theory with Nonlinear Constitutive Equations

    Full text link
    We generalize classical Yang-Mills theory by extending nonlinear constitutive equations for Maxwell fields to non-Abelian gauge groups. Such theories may or may not be Lagrangian. We obtain conditions on the constitutive equations specifying the Lagrangian case, of which recently-discussed non-Abelian Born-Infeld theories are particular examples. Some models in our class possess nontrivial Galilean (c goes to infinity) limits; we determine when such limits exist, and obtain them explicitly.Comment: Submitted to the Proceedings of the 3rd Symposium on Quantum Theory and Symmetries (QTS3) 10-14 September 2003. Preprint 9 pages including reference
    • 

    corecore