8 research outputs found

    Mutational analysis of Peroxiredoxin IV: exclusion of a positional candidate for multinodular goitre

    Get PDF
    BACKGROUND: Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1) and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV) gene. Since Prx-IV is involved in the removal of H(2)O(2) in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. METHODS: Four individuals (2 affected, 2 unrelated unaffected) were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. RESULTS: No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. CONCLUSIONS: Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene

    Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations. METHODS: We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity. RESULTS: We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC). CONCLUSION: Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%)

    Targeted Next Generation Sequencing in patients with Myotonia Congenita

    No full text
    INTRODUCTION: Myotonia Congenita (MC) is a nondystrophic skeletal muscle disease characterized by muscle stiffness, weakness, delayed skeletal relaxation and hypertrophic muscle. The disease can be inherited as dominant or recessive. More than 130 mutations in CLCN1 gene have been identified. MATERIALS AND METHODS: We analyzed the entire coding region and exon-intron boundaries of the CLCN1 gene in 40 MC patients. Samples already Sanger-sequenced were successively evaluated by Next Generation Sequencing (NGS), on Ion Torrent PGM. Moreover, additional 15 patients were sequenced directly by NGS. RESULTS: NGS allowed us to identify all CLCN1 mutations except those located within exon 3, demonstrating a 96% of sensitivity. Due to primer design, one SNP (exactly rs7794560) also failed to be detected. Our results enlarge the spectrum of CLCN1 mutations and showed a novel approach for molecular analysis of MC

    Identification and characterization of 5' CCG interruptions in complex DMPK expanded alleles

    Get PDF
    Myotonic dystrophy type 1 is a multisystemic autosomal dominant disorder caused by the expansion of (CTG) n triplets in the 3'UTR of the DMPK gene, on chromosome 19q13.3. In the last years, few DM1 patients with different patterns of CCG/CTC interruptions at the 3' end of the DMPK expanded tract have been described. However, the role of these interruptions in DM1 pathogenesis is still unclear. To study the frequency, stability and the structure of DMPK variant expanded alleles in the Italian population, we have re-evaluated 254 Italian DM1 patients using triplet-primed PCR (TP-PCR), at both the 3' and 5' ends of the CTG expansion. In addition, three DM1 families were also investigated in order to analyze the intergenerational stability of the interrupted DMPK alleles. Fourteen DM1 patients showed a TP-PCR electrophoretic profile indicating CCG/CTC interruptions within the CTG expansion. Interestingly, interruptions have been detected and, for the first time, sequenced at the 5' end of the CTG array. Analysis of five intergenerational transmissions revealed a substantial intrafamilial stability of the DM1 mutation among relatives. Our results support the hypothesis that CCG/CTC interruptions within the DMPK expanded alleles have a stabilizing effect on the mutational dynamics and can modulate the severity of symptoms in DM1 patients.European Journal of Human Genetics advance online publication, 23 November 2016; doi:10.1038/ejhg.2016.148
    corecore