5,738 research outputs found
Efficient time series detection of the strong stochasticity threshold in Fermi-Pasta-Ulam oscillator lattices
In this work we study the possibility of detecting the so-called strong
stochasticity threshold, i.e. the transition between weak and strong chaos as
the energy density of the system is increased, in anharmonic oscillator chains
by means of the 0-1 test for chaos. We compare the result of the aforementioned
methodology with the scaling behavior of the largest Lyapunov exponent computed
by means of tangent space dynamics, that has so far been the most reliable
method available to detect the strong stochasticity threshold. We find that
indeed the 0-1 test can perform the detection in the range of energy density
values studied. Furthermore, we determined that conventional nonlinear time
series analysis methods fail to properly compute the largest Lyapounov exponent
even for very large data sets, whereas the computational effort of the 0-1 test
remains the same in the whole range of values of the energy density considered
with moderate size time series. Therefore, our results show that, for a
qualitative probing of phase space, the 0-1 test can be an effective tool if
its limitations are properly taken into account.Comment: 5 pages, 2 figures; accepted for publication in Physical Review
- …