464 research outputs found
The calm before the storm: the need for critical incident stress management policy and procedure in law enforcement
Discusses the stress that results from crisis and the need for police agencies to have policies and procedures in place
Compactness for Holomorphic Supercurves
We study the compactness problem for moduli spaces of holomorphic supercurves
which, being motivated by supergeometry, are perturbed such as to allow for
transversality. We give an explicit construction of limiting objects for
sequences of holomorphic supercurves and prove that, in important cases, every
such sequence has a convergent subsequence provided that a suitable extension
of the classical energy is uniformly bounded. This is a version of Gromov
compactness. Finally, we introduce a topology on the moduli spaces enlarged by
the limiting objects which makes these spaces compact and metrisable.Comment: 38 page
New obstructions to symplectic embeddings
In this paper we establish new restrictions on symplectic embeddings of
certain convex domains into symplectic vector spaces. These restrictions are
stronger than those implied by the Ekeland-Hofer capacities. By refining an
embedding technique due to Guth, we also show that they are sharp.Comment: 80 pages, 3 figures, v2: improved exposition and minor corrections,
v3: Final version, expanded and improved exposition and minor corrections.
The final publication is available at link.springer.co
Accessibility-oriented development
Municipal governments worldwide have been pursuing transit-oriented development (TOD) strategies in order to increase transit ridership, curb traffic congestion, and rejuvenate urban neighborhoods. In many cities, however, development of planned sites around transit stations has been close to non-existent, due to, among other reasons, a lack of coordination between transit investments and land use at the regional scale. Furthermore, the ability to access transit differs from the ability to access destinations that people care about. Reframing transit-oriented development as accessibility-oriented development (AOD) can aid the process of creating functional connections between neighborhoods and the rest of the region, and maximize benefits from transport investments. AOD is a strategy that balances accessibility to employment and the labor force in order to foster an environment conducive to development. AOD areas are thus defined as having higher than average accessibility to employment opportunities and/or the labor force; such accessibility levels are expected to increase the quality of life of residents living in these areas by reducing their commute time and encouraging faster economic development. To quantify the benefits of AOD, accessibility to employment and the labor force are calculated in the Greater Toronto and Hamilton Area, Canada in 2001 and 2011. Cross-sectional and temporal regressions are then performed to predict average commute times and development occurring in AOD areas and across the region. Results show that AOD neighborhoods with high accessibility to jobs and low accessibility to the labor force have the lowest commute times in the region, while the relationship also holds for changes in average commute time between the studied time periods. In addition, both accessibility to jobs and accessibility to the labor force are associated with changes in development, as areas with high accessibility to jobs and the labor force attract more development. In order to realize the full benefits of planned transit investments, planning professionals and policy makers alike should therefore leverage accessibility as a tool to direct development in their cities, and concentrate on developing neighbourhoods with an AOD approach in mind
An exact sequence for contact- and symplectic homology
A symplectic manifold with contact type boundary induces
a linearization of the contact homology of with corresponding linearized
contact homology . We establish a Gysin-type exact sequence in which the
symplectic homology of maps to , which in turn maps to
, by a map of degree -2, which then maps to . Furthermore, we
give a description of the degree -2 map in terms of rational holomorphic curves
with constrained asymptotic markers, in the symplectization of .Comment: Final version. Changes for v2: Proof of main theorem supplemented
with detailed discussion of continuation maps. Description of degree -2 map
rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with
emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for
clarity (now Remark 9). Various other minor modification
Efficacy of the Pentavalent Rotavirus Vaccine, RotaTeq (RV5), Between Doses of a 3-Dose Series and With Less Than 3 Doses (Incomplete Regimen)
Post-hoc analyses of the Rotavirus Efficacy and Safety Trial (RES T) were conducted to determine whether the pentavalent rotavirus vaccine (RV5) confers early protection against rotavirus gastroenteritis (RVGE) before completion of the 3-dose regimen. To evaluate the efficacy of RV5 between doses in reducing the rates of RVGE-related hospitalizations and emergency department (ED) visits in infants who ultimately received all 3 doses of RV5/placebo, events occurring from 2 weeks after the first and second doses to receipt of the subsequent dose (Analysis A) and events occurring from 2 weeks after the first and second doses to 2 weeks after the subsequent dose (Analysis B) were analyzed. In Analysis A, RV5 reduced the rates of combined hospitalizations and ED visits for G1-G4 RVGE or RVGE regardless of serotype between doses 1 and 2 by 100% [95% confidence interval (CI): 72-100%] or 82% (95% CI: 39-97%), respectively, and between doses 2 and 3, RV5 reduced the rates of combined hospitalizations and ED visits for G1-G4 RVGE or RVGE regardless of serotype by 91% (95% CI: 63-99%) or 84% (95% CI: 54-96%), respectively. Similar rate reductions were observed in Analysis B. These data suggest that RV5 provides a high level of protection between doses against hospitalizations and ED visits for RVGE starting as early as 14 days after the first dose
Sex and the Single Gametophyte: Revising the Homosporous Vascular Plant Life Cycle in Light of Contemporary Research
Homosporous vascular plants are typically depicted as extreme inbreeders, with bisexual gametophytes that produce strictly homozygous sporophytes. This view is promulgated in textbook life cycles despite ample evidence that natural populations of most species regularly outcross. We review research on a variety of mechanisms, including genetic load, asynchronous production of eggs and sperm, and pheromonal control of gamete production, that actively promote heterozygosity in ferns and lycophytes. Evolution of the land plants cannot be reconstructed without accurate depictions of the unique life cycle that has helped make ferns the second most diverse lineage of vascular plants on Earth. With revised illustrations and definitions, we provide scientists, educators, and students with a contemporary understanding of fern and lycophyte reproduction, revealing them as evolutionarily dynamic and exploiting a wide range of mating systems
Structural Property Prediction
While many good textbooks are available on Protein Structure, Molecular
Simulations, Thermodynamics and Bioinformatics methods in general, there is no
good introductory level book for the field of Structural Bioinformatics. This
book aims to give an introduction into Structural Bioinformatics, which is
where the previous topics meet to explore three dimensional protein structures
through computational analysis. We provide an overview of existing
computational techniques, to validate, simulate, predict and analyse protein
structures. More importantly, it will aim to provide practical knowledge about
how and when to use such techniques. We will consider proteins from three major
vantage points: Protein structure quantification, Protein structure prediction,
and Protein simulation & dynamics.
Some structural properties of proteins that are closely linked to their
function may be easier (or much faster) to predict from sequence than the
complete tertiary structure; for example, secondary structure, surface
accessibility, flexibility, disorder, interface regions or hydrophobic patches.
Serving as building blocks for the native protein fold, these structural
properties also contain important structural and functional information not
apparent from the amino acid sequence. Here, we will first give an introduction
into the application of machine learning for structural property prediction,
and explain the concepts of cross-validation and benchmarking. Next, we will
review various methods that incorporate knowledge of these concepts to predict
those structural properties, such as secondary structure, surface
accessibility, disorder and flexibility, and aggregation.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra,
Sanne Abeln. This chapter is part of the book "Introduction to Protein
Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to
all the (published) chapter
General Spectral Flow Formula for Fixed Maximal Domain
We consider a continuous curve of linear elliptic formally self-adjoint
differential operators of first order with smooth coefficients over a compact
Riemannian manifold with boundary together with a continuous curve of global
elliptic boundary value problems. We express the spectral flow of the resulting
continuous family of (unbounded) self-adjoint Fredholm operators in terms of
the Maslov index of two related curves of Lagrangian spaces. One curve is given
by the varying domains, the other by the Cauchy data spaces. We provide
rigorous definitions of the underlying concepts of spectral theory and
symplectic analysis and give a full (and surprisingly short) proof of our
General Spectral Flow Formula for the case of fixed maximal domain. As a side
result, we establish local stability of weak inner unique continuation property
(UCP) and explain its role for parameter dependent spectral theory.Comment: 22 page
Pulse-Echo Quantitative US Biomarkers for Liver Steatosis: Toward Technical Standardization
Excessive liver fat (steatosis) is now the most common cause of chronic liver disease worldwide and is an independent risk factor for cirrhosis and associated complications. Accurate and clinically useful diagnosis, risk stratification, prognostication, and therapy monitoring require accurate and reliable biomarker measurement at acceptable cost. This article describes a joint effort by the American Institute of Ultrasound in Medicine (AIUM) and the RSNA Quantitative Imaging Biomarkers Alliance (QIBA) to develop standards for clinical and technical validation of quantitative biomarkers for liver steatosis. The AIUM Liver Fat Quantification Task Force provides clinical guidance, while the RSNA QIBA Pulse-Echo Quantitative Ultrasound Biomarker Committee develops methods to measure biomarkers and reduce biomarker variability. In this article, the authors present the clinical need for quantitative imaging biomarkers of liver steatosis, review the current state of various imaging modalities, and describe the technical state of the art for three key liver steatosis pulse-echo quantitative US biomarkers: attenuation coefficient, backscatter coefficient, and speed of sound. Lastly, a perspective on current challenges and recommendations for clinical translation for each biomarker is offered
- …