217 research outputs found
The Initial Mass Function of the Orion Nebula Cluster across the H-burning limit
We present a new census of the Orion Nebula Cluster (ONC) over a large field
of view (>30'x30'), significantly increasing the known population of stellar
and substellar cluster members with precisely determined properties. We develop
and exploit a technique to determine stellar effective temperatures from
optical colors, nearly doubling the previously available number of objects with
effective temperature determinations in this benchmark cluster. Our technique
utilizes colors from deep photometry in the I-band and in two medium-band
filters at lambda~753 and 770nm, which accurately measure the depth of a
molecular feature present in the spectra of cool stars. From these colors we
can derive effective temperatures with a precision corresponding to better than
one-half spectral subtype, and importantly this precision is independent of the
extinction to the individual stars. Also, because this technique utilizes only
photometry redward of 750nm, the results are only mildly sensitive to optical
veiling produced by accretion. Completing our census with previously available
data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign
masses and ages down to 0.02 solar masses. At faint luminosities, we detect a
large population of background sources which is easily separated in our
photometry from the bona fide cluster members. The resulting initial mass
function of the cluster has good completeness well into the substellar mass
range, and we find that it declines steeply with decreasing mass. This suggests
a deficiency of newly formed brown dwarfs in the cluster compared to the
Galactic disk population.Comment: 16 pages, 18 figures. Accepted for publication in The Astrophysical
Journa
HST measures of Mass Accretion Rates in the Orion Nebula Cluster
The present observational understanding of the evolution of the mass
accretion rates (Macc) in pre-main sequence stars is limited by the lack of
accurate measurements of Macc over homogeneous and large statistical samples of
young stars. Such observational effort is needed to properly constrain the
theory of star formation and disk evolution. Based on HST/WFPC2 observations,
we present a study of Macc for a sample of \sim 700 sources in the Orion Nebula
Cluster, ranging from the Hydrogen-burning limit to M\ast \sim 2M\odot. We
derive Macc from both the U-band excess and the H{\alpha} luminosity
(LH{\alpha}), after determining empirically both the shape of the typical
accretion spectrum across the Balmer jump and the relation between the
accretion luminosity (Lacc) and LH{\alpha}, that is Lacc/L\odot =
(1.31\pm0.03)\cdotLH{\alpha}/L\odot + (2.63\pm 0.13). Given our large
statistical sample, we are able to accurately investigate relations between
Macc and the parameters of the central star such as mass and age. We clearly
find Macc to increase with stellar mass, and decrease over evolutionary time,
but we also find strong evidence that the decay of Macc with stellar age occurs
over longer timescales for more massive PMS stars. Our best fit relation
between these parameters is given by: log(Macc/M\odot\cdotyr)=(-5.12 \pm 0.86)
-(0.46 \pm 0.13) \cdot log(t/yr) -(5.75 \pm 1.47)\cdot log(M\ast/M\odot) +
(1.17 \pm 0.23)\cdot log(t/yr) \cdot log(M\ast/M\odot). These results also
suggest that the similarity solution model could be revised for sources with
M\ast > 0.5M\odot. Finally, we do not find a clear trend indicating
environmental effects on the accretion properties of the sources.Comment: 17 pages, 15 figures, accepted for publication in Ap
Infrared Astronomy with the Hubble Space Telescope and the Next Generation Space Telescope
Abstract. I review the characteristics of NICMOS before and after the installation of the new cooling system. Recent results on high-redshift supernovae and star formation in the Large Magellanic Cloud are used to illustrate the NICMOS performance. I present the IR channel of WFC3, a fourth generation instrument to be installed on the Hubble Space Telescope in 2004. Finally, I briefly report on the current status of the NGST project
A Search for Companions to Brown Dwarfs in the Taurus and Chamaeleon Star Forming Regions
We present the results of a search for companions to young brown dwarfs in
the Taurus and Chamaeleon I star forming regions (1/2-3 Myr). We have used
WFPC2 on board HST to obtain F791W and F850LP images of 47 members of these
regions that have spectral types of M6-L0 (0.01-0.1 Msun). An additional
late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with
adaptive optics at Keck Observatory. We have applied PSF subtraction to the
primaries and have searched the resulting images for objects that have colors
and magnitudes that are indicative of young low-mass objects. Through this
process, we have identified promising candidate companions to 2MASS
J04414489+2301513 (rho=0.105"/15 AU), 2MASS J04221332+1934392 (rho=0.05"/7 AU),
and ISO 217 (rho=0.03"/5 AU). We reported the discovery of the first candidate
in a previous study, showing that it has a similar proper motion as the primary
through a comparison of astrometry measured with WFPC2 and Gemini adaptive
optics. We have collected an additional epoch of data with Gemini that further
supports that result. By combining our survey with previous high-resolution
imaging in Taurus, Chamaeleon, and Upper Sco (10 Myr), we measure binary
fractions of 14/93 = 0.15+0.05/-0.03 for M4-M6 (0.1-0.3 Msun) and 4/108 =
0.04+0.03/-0.01 for >M6 (10 AU. Given the youth
and low density of these three regions, the lower binary fraction at later
types is probably primordial rather than due to dynamical interactions among
association members. The widest low-mass binaries (>100 AU) also appear to be
more common in Taurus and Chamaeleon than in the field, which suggests that the
widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or
that field brown dwarfs have been born predominantly in denser clusters where
wide systems are disrupted or inhibited from forming.Comment: Astrophysical Journal, in pres
VLTI observations of IRS~3: The brightest compact MIR source at the Galactic Centre
The dust enshrouded star IRS~3 in the central light year of our galaxy was
partially resolved in a recent VLTI experiment. The presented observation is
the first step in investigating both IRS~3 in particular and the stellar
population of the Galactic Centre in general with the VLTI at highest angular
resolution. We will outline which scientific issues can be addressed by a
complete MIDI dataset on IRS~3 in the mid infrared.Comment: 4 pages, 3 figures, published in: The ESO Messenge
A multi-color optical survey of the orion nebula cluster. II. The H-R diagram
We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical
photometry and spectroscopy.We study the colorâcolor diagrams in BVI, plus a narrowband filter centered at 6200 Ă
, finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M
spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry, constraining the surface gravity value as predicted by a pre-main-sequence isochrone.We refine these model colors even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar reddening and the optical excess due to accretion from the location of each star in the BVI colorâcolor diagram. This enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax measurements. With a careful choice of also the spectral-typeâtemperature transformation, we produce the new HertzsprungâRussell diagram of the ONC population, more populated than previous works. With respect to previous works, we find higher luminosity for late-type stars and a slightly lower luminosity for early types. We determine the age distribution of the population, peaking from ~2 to ~3 Myr depending on the model. We study the distribution of the members in the massâage plane and find that taking into account selection effects due to incompleteness,
removes an apparent correlation between mass and age.We derive the initial mass function for low- and intermediate mass members of the ONC, which turns out to be model dependent and shows a turnover at M âČ 0.2 M_â
The Enigmatic HH 255
To gain insight into the nature of the peculiar Herbig-Haro object HH 255
(also called Burnham's nebula), we use previously published observations to
derive information about the emission line fluxes as a function of position
within HH 255 and compare them with the well-studied, and relatively
well-behaved bow shock HH 1. There are some qualitative similarities in the
H and [O III] 5007 lines in both objects. However, in contrast to the
expectation of the standard bow shock model, the fluxes of the [O I] 6300, [S
II] 6731, and [N II] 6583 lines are essentially constant along the axis of the
flow, while the electron density decreases, over a large distance within HH
255.
We also explore the possibility that HH 255 represents the emission behind a
standing or quasi-stationary shock. The shock faces upwind, and we suggest,
using theoretical arguments, that it may be associated with the collimation of
the southern outflow from T Tauri. Using a simplified magnetohydrodynamic
simulation to illustrate the basic concept, we demonstrate that the existence
of such a shock at the north edge of HH 255 could indeed explain its unusual
kinematic and ionization properties. Whether or not such a shock can explain
the detailed emission line stratification remains an open question.Comment: Accepted by PASP, 12 pages including 8 figure
The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster
The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster (ONC) has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2), and the Near-Infrared Camera and Multi-Object Spectrograph (NICMOS) instrument in 11 filters ranging from the U band to the H band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster initial mass function, age spread, mass accretion, binarity, and cirumstellar disk evolution. The scanning pattern allowed us to cover a contiguous field of approximately 600 arcmin^2 with both ACS and WFPC2, with a typical exposure time of approximately 11 minutes per ACS filter, corresponding to a point source depth AB(F435W) = 25.8 and AB(F775W) = 25.2 with 0.2 mag of photometric error. We describe the observations, data reduction, and data products, including images, source catalogs, and tools for quick look preview. In particular, we provide ACS photometry for 3399 stars, most of them detected at multiple epochs; WFPC2 photometry for 1643 stars, 1021 of them detected in the U band; and NICMOS JH photometry for 2116 stars. We summarize the early science results that have been presented in a number of papers. The final set of images and the photometric catalogs are publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute
X-ray properties of protostars in the Orion Nebula
The origin and evolution of the X-rays in very young stellar objects (YSOs)
are not yet well understood since it is very hard to observe YSOs in the
protostellar phase. We study the X-ray properties of Class 0-I objects in the
Orion Nebula Cluster (ONC) and compare them with those of the more evolved
Class II and III members. Using Chandra Orion Ultradeep Project (COUP) data, we
study the X-ray properties of stars in different evolutionary classes:
luminosities, NH, temperatures and time variability are compared in order to
understand if the interaction between the circumstellar material and the
central object can influence the X-ray emission. We have assembled the deepest
and most complete photometric catalog of objects in the ONC region from the UV
to 8 microns using data from HST, [email protected] ESO and ISPI@4m CTIO telescopes, and
Spitzer IRAC. We select high probability candidate Class 0-I protostars,
distinguishing between those having a spectral energy distribution which rises
from K up to 8 microns (Class 0-Ia) from those where the SED rises from K up to
4.5 microns and decreasing afterwards (Class 0-Ib). We select a sample of bona
fide Class II stars and a set of Class III stars with IR emission consistent
with normal photospheres. Our principal result is that Class 0-Ia objects are
significantly less luminous in X-rays, both in the total and hard bands, than
the more evolved Class II stars with mass larger than 0.5 Msun; these latter
show X-ray luminosities similar to those of Class 0-Ib stars. This result
supports the hypothesis that the onset of X-ray emission occurs at a very early
stage of star formation. Temporal variability and spectral properties of Class
0-I stars are similar to those of the more evolved Class II and III objects,
except for a larger absorption likely due to gas in the circumstellar material.Comment: Comments: 38 pages, 14 Postscript figures, 14 Tables. Accepted for
publication in Ap
- âŠ