40 research outputs found

    The Pathophysiology of Extracellular Hemoglobin Associated with Enhanced Oxidative Reactions

    No full text
    Hemoglobin (Hb) continuously undergoes autoxidation producing superoxide which dismutates into hydrogen peroxide (H2O2) and is a potential source for subsequent oxidative reactions. Autoxidation is most pronounced under hypoxic conditions in the microcirculation and for unstable dimers formed at reduced Hb concentrations. In the red blood cell (RBC), oxidative reactions are inhibited by an extensive antioxidant system. For extracellular Hb, whether from hemolysis of RBCs and/or the infusion of Hb-based blood substitutes, the oxidative reactions are not completely neutralized by the available antioxidant system. Un-neutralized H2O2 oxidizes ferrous and ferric Hbs to Fe(IV)-ferrylHb and oxyferrylHb, respectively. FerrylHb further reacts with H2O2 producing heme degradation products and free iron. OxyferrylHb, in addition to Fe(IV) contains a free radical that can undergo additional oxidative reactions. Fe(III)Hb produced during Hb autoxidation also readily releases heme, an additional source for oxidative stress. These oxidation products are a potential source for oxidative reactions in the plasma, but to a greater extent when the lower molecular weight Hb dimers enter cells and tissues. Heme and oxyferryl have been shown to have a proinflammatory effect further increasing their potential for oxidative stress. These oxidative reactions contribute to a number of pathological situations including atherosclerosis, kidney malfunction, sickle cell disease and malaria. The toxic effects of extracellular Hb are of particular concern for increased hemolysis due to hemolytic anemia. Hemolysis is further exacerbated in various diseases and their treatments. Blood transfusions are required whenever there is an appreciable decrease in RBCs due to hemolysis or blood loss. It is, therefore, essential that transfused blood, whether stored RBCs or blood obtained by an Autologous Blood Recovery System from the patient, does not further increase extracellular Hb

    Metal-ion coordination in copper and nickel reconstituted hemoglobins

    No full text
    This article does not have an abstract

    Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging

    Get PDF
    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H(2)O(2)). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H(2)O(2) that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging

    Interaction of copper(II) with hemoglobins in the unliganded conformation

    No full text
    The interaction of exogenous Cu(II) with stable T-state Ni(II)- and Cu(II)-reconstituted hemoglobins has been studied. The relative binding affinities for the two human hemoglobin Cu(II) binding sites are found to be reversed in these hemoglobins relative to native iron(II) hemoglobin A. Nickel hemoglobin, modified by N-ethylmaleimide (NEM), iodoacetamide, and carboxypeptidase A, is used to establish that the observed differences can be attributed to the protein quaternary conformation and not to the metal substitution. Magnetic interactions between the Cu(II) responsible for oxidation and the metal-heme center suggest that the Cu(II) is closer to the heme in T-state hemoglobin than R-state hemoglobin. This finding suggests a pathway for T-state heme oxidation which does not require the beta-93 sulfhydryl group, consistent with rapid Cu(II) oxidation for NEM-reacted deoxyhemoglobin

    Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions

    No full text
    By low temperature electron paramagnetic resonance we have detected the formation of a free radical signal during incubation of partially oxygenated hemoglobin at 235 K. The observed signal has g|| = 2.0565 and g&#8869; = 2.0043, consistent with the previously reported values for superoxide. The presence of additional EPR signals for oxygen-17 bound hemoglobin, with (O17-O17)A&#8869; = 63 G and (O17-O16)A &#8869;= 94 G under identical conditions, confirms the presence of a radical containing two nonequivalent oxygens as required for a superoxide in magnetically inequivalent environments. The superoxide radical has not previously been directly detected during hemoglobin autoxidation because of its rapid dismutation. Our ability to follow the formation of superoxide for more than 15 min is attributed to its production in the hydrophobic heme pocket where dismutation is slow. The enhanced production of this free radical at intermediate oxygen pressures is shown to coincide with enhanced rates of hemoglobin autoxidation for partially oxygenated intermediates. The formation of superoxide in the heme pocket under these conditions is attributed to enhanced heme pocket flexibility. Greater flexibility facilitates distal histidine interactions which destabilize the iron−oxygen bond resulting in the release of superoxide radical into the heme pocket
    corecore