3,653 research outputs found
Brownian scattering of a spinon in a Luttinger liquid
We consider strongly interacting one-dimensional electron liquids where
elementary excitations carry either spin or charge. At small temperatures a
spinon created at the bottom of its band scatters off low-energy spin- and
charge-excitations and follows the diffusive motion of a Brownian particle in
momentum space. We calculate the mobility characterizing these processes, and
show that the resulting diffusion coefficient of the spinon is parametrically
enhanced at low temperatures compared to that of a mobile impurity in a
spinless Luttinger liquid. We briefly discuss that this hints at the relevance
of spin in the process of equilibration of strongly interacting one-dimensional
electrons, and comment on implications for transport in clean single channel
quantum wires
Cross-border Movement of Patients in the EU: A Re-Appraisal
The national welfare state, so it seems, has come under attack by European integration. This article focuses on one facet of the welfare state, that is, healthcare and on one specific dimension, that is, cross-border movement of patients. The institution which has played a pivotal role in the development of the framework regulating the migration of patients is the European Court of Justice (ECJ). The Court’s activity in this sensitive area has not remained without critics. This was even more so since the Court invoked Treaty (primary) law which not only has made it difficult to overturn case law but also has left the legislator with very little room for manoeuvre in relation to any future (secondary) EU law. What is therefore of special interest in terms of legitimacy is the legal reasoning by which the Court has made its contribution to the development of this framework. This article is a re-appraisal of the legal development in this field
Eversion, Ecology, Touch, and Rain: A Post-Pc Rhetoric
The post-PC era of computing offers digital rhetors an opportunity to innovate their inventional approaches. The new era is one in which an ecology of networked, distributed, sensor-based devices amplify our perceptions of self and world by changing the ecological relations that define our connections to our techno-social environments. By extending Casey Boyle’s posthuman practice of rhetorical invention to the new computational era, rhetoricians can develop digital interactive projects that move participants by amplifying the choric bases of their perceptions of self and world
Interaction-induced backscattering in short quantum wires
We study interaction-induced backscattering in clean quantum wires with
adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes
such systems to a fully equilibrated steady state only on length scales
exponentially large in the ratio of bandwidth of excitations and temperature.
Here we focus on shorter wires in which full equilibration is not accomplished.
Signatures of relaxation then are due to backscattering of hole excitations
close to the band bottom which perform a diffusive motion in momentum space
while scattering from excitations at the Fermi level. This is reminiscent to
the first passage problem of a Brownian particle and, regardless of the
interaction strength, can be described by an inhomogeneous Fokker-Planck
equation. From general solutions of the latter we calculate the hole
backscattering rate for different wire lengths and discuss the resulting length
dependence of interaction-induced correction to the conductance of a clean
single channel quantum wire.Comment: 10 pages, 4 figure
Endstates in multichannel spinless p-wave superconducting wires
Multimode spinless p-wave superconducting wires with a width W much smaller
than the superconducting coherence length \xi are known to have multiple
low-energy subgap states localized near the wire's ends. Here we compare the
typical energies of such endstates for various terminations of the wire: A
superconducting wire coupled to a normal-metal stub, a weakly disordered
superconductor wire and a wire with smooth confinement. Depending on the
termination, we find that the energies of the subgap states can be higher or
lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure
Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density
Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest
that these two rare-gas atoms measure a qualitatively different surface
corrugation: While Ne atom scattering seemingly reflects the electron-density
undulation of the substrate surface, the scattering potential of He atoms
appears to be anticorrugated. An understanding of this perplexing result is
lacking. In this paper we present density functional theory calculations of the
interaction potentials of He and Ne with Rh(110). We find that, and explain
why, the nature of the interaction of the two probe particles is qualitatively
different, which implies that the topographies of their scattering potentials
are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure
Error analysis for mesospheric temperature profiling by absorptive occultation sensors
International audienceAn error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50?100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS ? Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50?100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based) occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques)
Statistical periodicity in driven quantum systems: General formalism and application to noisy Floquet topological chains
Much recent experimental effort has focused on the realization of exotic
quantum states and dynamics predicted to occur in periodically driven systems.
But how robust are the sought-after features, such as Floquet topological
surface states, against unavoidable imperfections in the periodic driving? In
this work, we address this question in a broader context and study the dynamics
of quantum systems subject to noise with periodically recurring statistics. We
show that the stroboscopic time evolution of such systems is described by a
noise-averaged Floquet superoperator. The eigenvectors and -values of this
superoperator generalize the familiar concepts of Floquet states and
quasienergies and allow us to describe decoherence due to noise efficiently.
Applying the general formalism to the example of a noisy Floquet topological
chain, we re-derive and corroborate our recent findings on the noise-induced
decay of topologically protected end states. These results follow directly from
an expansion of the end state in eigenvectors of the Floquet superoperator.Comment: 13 pages, 5 figures. This is the final, published versio
Modeling Dual Pathways for the Metazoan Spindle Assembly Checkpoint
Using computational modelling, we investigate mechanisms of signal
transduction focusing on the spindle assembly checkpoint where a single
unattached kinetochore is able to signal to prevent cell cycle progression.
This inhibitory signal switches off rapidly once spindle microtubules have
attached to all kinetochores. This requirement tightly constrains the possible
mechanisms. Here we investigate two possible mechanisms for spindle checkpoint
operation in metazoan cells, both supported by recent experiments. The first
involves the free diffusion and sequestration of cell-cycle regulators. This
mechanism is severely constrained both by experimental fluorescence recovery
data and also by the large volumes involved in open mitosis in metazoan cells.
Using a simple mathematical analysis and computer simulation, we find that this
mechanism can generate the inhibition found in experiment but likely requires a
two stage signal amplification cascade. The second mechanism involves spatial
gradients of a short-lived inhibitory signal that propagates first by diffusion
but then primarily via active transport along spindle microtubules. We propose
that both mechanisms may be operative in the metazoan spindle assembly
checkpoint, with either able to trigger anaphase onset even without support
from the other pathway.Comment: 9 pages, 2 figure
- …