9,207 research outputs found
IL-6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo
IL-6 plays a pivotal role in favoring T-cell commitment toward a Th17 cell rather than Treg-cell phenotype, as established through in vitro model systems. We predicted that in the absence of IL-6, mice infected with the gastrointestinal helminth Heligmosomoides polygyrus would show reduced Th17-cell responses, but also enhanced Treg-cell activity and consequently greater susceptibility. Surprisingly, worm expulsion was markedly potentiated in IL-6-deficient mice, with significantly stronger adaptive Th2 responses in both IL-6â/â mice and BALB/c recipients of neutralizing anti-IL-6 monoclonal Ab. Although IL-6-deficient mice showed lower steady-state Th17-cell levels, IL-6-independent Th17-cell responses occurred during in vivo infection. We excluded the Th17 response as a factor in protection, as Ab neutralization did not modify immunity to H. polygyrus infection in BALB/c mice. Resistance did correlate with significant changes to the associated Treg-cell phenotype however, as IL-6-deficient mice displayed reduced expression of Foxp3, Helios, and GATA-3, and enhanced production of cytokines within the Treg-cell population. Administration of an anti-IL-2:IL-2 complex boosted Treg-cell proportions in vivo, reduced adaptive Th2 responses to WT levels, and fully restored susceptibility to H. polygyrus in IL-6-deficient mice. Thus, in vivo, IL-6 limits the Th2 response, modifies the Treg-cell phenotype, and promotes host susceptibility following helminth infection
Macrobiota â helminths as active participants and partners of the microbiota in host intestinal homeostasis
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis
THE ART OF WAR: PATTERNS AND MECHANISMS UNDERLYING PREDATOR-INDUCED PLASTICITY OF AMPHIBIANS
Organisms often employ phenotypic plasticity as a strategy to cope with variable environments. This is particularly true of predation threats, wherein prey induce defenses to reduce detection or capture by predators. In order to produce appropriate defenses, prey must be able to discern useful information from environmental cues. Despite the pervasive production of inducible defenses, we understand very little of how much useful information is conveyed to organisms in cues, or how the subsequent plastic responses vary within groups of organisms.
To address the need for comparative studies of phenotypic plasticity, we sought to examine morphological and behavioral defenses of five species of Ambystoma salamander larvae in response to larval dragonfly (Anax junius) chemical cues in a common garden environment. Dragonfly cues induced relatively few morphological changes across species. Likewise, salamanders did not vary in their refuge use during the experiment, though several species reduced their activity in the presence of predators early in development. Our results suggest that behavioral and morphological defenses in Ambystoma are highly variable among species and the genus appears to be less plastic than tadpoles and other salamander species.
To understand what types of information prey are capable of responding to in their environment, we raised grey treefrog tadpoles (Hyla verisciolor) in the presence of cues isolated from different stages of an attack sequence by larval dragonflies (A. junius) or larval dragonflies
THE ART OF WAR: PATTERNS AND MECHANISMS UNDERLYING PREDATOR-INDUCED PLASTICITY OF AMPHIBIANS
Heather Michelle Shaffery, M.S.
University of Pittsburgh, 2013
iv
consuming different combinations of grey treefrog tadpoles and snails (Helisoma trivolvis) across different temporal sequences. When exposed to a predator consuming grey treefrogs, tadpoles reduced their activity, increased their hiding behavior, and induced deeper tails. As we exposed prey to more types of cues from an attack sequence, they also increased tail depth and hiding behavior but did not change their activity. Additionally, treefrog tadpoles generally increased their defense as the biomass of treefrogs consumed increased, regardless of whether heterospecifics were being consumed. Our results suggest that treefrogs can gain cue information from all portions of an attack sequence, and that both temporal patterns of feeding and diet content of predators influence the type and magnitude of induced prey defenses
For the good of the group? Exploring group-level evolutionary adaptations using multilevel selection theory.
In this paper, we present an evolutionary framework, multilevel selection theory (MLS), that is highly amenable to existing social psychological theory and empiricism. MLS provides an interpretation of natural selection that shows how group-beneficial traits can evolve, a prevalent implication of social psychological data. We outline the theory and provide a number of example topics, focusing on prosociality, policing behavior, gossip, brainstorming, distributed cognition, and social identity. We also show that individual differences can produce important group-level outcomes depending on differential aggregation of individual types and relate this to the evolutionary dynamics underlying group traits. Drawing on existing work, we show how social psychologists can integrate this framework into their research program and suggest future directions for research
The U.S. Gulf of Mexico Pink Shrimp, Farfantepenaeus duorarum, Fishery: 50 Years of Commercial Catch Statistics
U.S. Gulf of Mexico, pink shrimp, Farfantepenaeus duorarum, catch statistics have been collected by NOAAâs National Marine Fisheries Service, or its predecessor agency, for over 50 years. Recent events, including hurricanes and oil spills within the ecosystem of the fishery, have shown that documentation of these catch data is of primary importance. Fishing effort for this stock has fluctuated over the 50-year period analyzed, ranging from 3,376 to 31,900 days fished, with the most recent years on record, 2008 and 2009, exhibiting declines up to 90% relative to the high levels recorded in the mid 1990âs. Our quantification of F. duorarum landings and catch rates (CPUE) indicates catch have been below the long-term average of about 12 million lb for all of the last 10 years on record. In contrast to catch and effort, catch rates have increased in recent years, with record CPUE levels measured in 2008 and 2009, of 1,340 and 1,144 lb per day fished, respectively. Our regression results revealed catch was dependent upon fishing effort (F=98.48df=1, 48, p<0.001, r2=0.67), (Catch=1,623,378 + (520) Ă (effort)). High CPUEâs measured indicate stocks were not in decline prior to 2009, despite the decline in catch. The decrease in catch is attributed in large part to low effort levels caused by economical and not biological or habitat related conditions. Future stock assessments using these baseline data will provide further insights and management advice concerning the Gulf of Mexi
Simulation of Tail Weight Distributions in Biological Year 1986â2006 Landings of Brown Shrimp, Farfantepenaeus aztecus, from the Northern Gulf of Mexico Fishery
Size distribution within re-
ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc.
The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C).
Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un-
derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp.
This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986â2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of
w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C.
Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them
Attack Detection in Sensor Network Target Localization Systems with Quantized Data
We consider a sensor network focused on target localization, where sensors
measure the signal strength emitted from the target. Each measurement is
quantized to one bit and sent to the fusion center. A general attack is
considered at some sensors that attempts to cause the fusion center to produce
an inaccurate estimation of the target location with a large mean-square-error.
The attack is a combination of man-in-the-middle, hacking, and spoofing attacks
that can effectively change both signals going into and coming out of the
sensor nodes in a realistic manner. We show that the essential effect of
attacks is to alter the estimated distance between the target and each attacked
sensor to a different extent, giving rise to a geometric inconsistency among
the attacked and unattacked sensors. Hence, with the help of two secure
sensors, a class of detectors are proposed to detect the attacked sensors by
scrutinizing the existence of the geometric inconsistency. We show that the
false alarm and miss probabilities of the proposed detectors decrease
exponentially as the number of measurement samples increases, which implies
that for sufficiently large number of samples, the proposed detectors can
identify the attacked and unattacked sensors with any required accuracy
- âŠ