154 research outputs found

    A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Get PDF
    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the ÎČ-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced

    Exendin-4 Improves Blood Glucose Control in Both Young and Aging Normal Non-Diabetic Mice, Possible Contribution of Beta Cell Independent Effects

    Get PDF
    Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages.We treated 3-month and 20 to 22-month old C57/DBA mice with 10 nM/kg exendin-4 for 10 days with measurements of blood glucose and body weight. We performed OGTT and ITT to evaluate the glucose response and insulin sensitivity. Islet morphology and beta cell mass were measured by immuno-staining and beta cell proliferation was evaluated by BrdU incorporation and PCNA staining. Real-time PCR and western blot were used to measure protein changes in the liver tissue after exendin-4 treatment.Exendin-4 treatment improved glycemic control in both 3-month and 20 to 22-month old mice. In both groups of mice, the blood glucose lowering effect was independent of beta cell function as indicated by unchanged beta cell proliferation, insulin secretion or beta cell mass. Moreover, we found that exendin-4 treatment increased hepatic AKT and FOXO1 phosphorylation and inhibited glucose-6-phosphotase (G6P) and Phosphoenolpyruvate carboxykinase (PEPCK) expression in young mice, but this effect was attenuated in aging mice while the insulin sensitivity showed no change in the young group but significantly improved in aging mice.Based on these data, we conclude that the glucose lowering effect of exendin-4 in normal non-diabetic mice was not blunted by aging. We further showed that although there was slight difference in the glucose modulating mechanism of exendin-4 therapy in young and aged mice, the improved glucose control seemed uncorrelated with increased beta cell mass or insulin secretion

    Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    Get PDF
    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B

    Simulation of Harmonic Waves Generated by the Piston-type Wave-maker in the Wave Flume via the Exponential Basis Functions Mesh-free Method and MEL Formulation

    No full text
    In this article, a meshless method based on exponential basis functions (EBFs) is presented to simulate the harmonic waves with moving free-surfaces generated by the piston-type wave maker. Accordingly, velocity potential is adopted in a Mixed Eulerian-Lagrangian (MEL) approach. Boundary conditions are met through a point-wise collocation approach. In order to update the geometry in the simulation time, the free surface points are only moved vertically. To reduce the reflection in the wave flume, a damping zone is added at the far end opposite to the wave maker, where  the velocity is modified by adding an artificial damping term. The results indicated the ability of this numerical method in simulating free surface flow problems like non-linear waves with a good accuracy, as well as suitable performances and the least run time calculation

    Neuroimaging Technology in Exercise Neurorehabilitation Research in Persons with MS: A Scoping Review

    No full text
    There is increasing interest in the application of neuroimaging technology in exercise neurorehabilitation research among persons with multiple sclerosis (MS). The inclusion and focus on neuroimaging outcomes in MS exercise training research is critical for establishing a biological basis for improvements in functioning and elevating exercise within the neurologist’s clinical armamentarium alongside disease modifying therapies as an approach for treating the disease and its consequences. Indeed, the inclusion of selective neuroimaging approaches and sensor-based technology among physical activity, mobility, and balance outcomes in such MS research might further allow for detecting specific links between the brain and real-world behavior. This paper provided a scoping review on the application of neuroimaging in exercise training research among persons with MS based on searches conducted in PubMed, Web of Science, and Scopus. We identified 60 studies on neuroimaging-technology-based (primarily MRI, which involved a variety of sequences and approaches) correlates of functions, based on multiple sensor-based measures, which are typically targets for exercise training trials in MS. We further identified 12 randomized controlled trials of exercise training effects on neuroimaging outcomes in MS. Overall, there was a large degree of heterogeneity whereby we could not identify definitive conclusions regarding a consistent neuroimaging biomarker of MS-related dysfunction or singular sensor-based measure, or consistent neural adaptation for exercise training in MS. Nevertheless, the present review provides a first step for better linking correlational and randomized controlled trial research for the development of high-quality exercise training studies on the brain in persons with MS, and this is timely given the substantial interest in exercise as a potential disease-modifying and/or neuroplasticity-inducing behavior in this population

    Intelligently optimized electrospun polyacrylonitrile/poly(vinylidene fluoride) nanofiber: Using artificial neural networks

    No full text
    • 

    corecore