590 research outputs found
Electrochemical titrations and reaction time courses monitored in situ by magnetic circular dichroism spectroscopy
Magnetic circular dichroism (MCD) spectra, at ultraviolet–visible or near-infrared wavelengths (185–2000 nm), contain the same transitions observed in conventional absorbance spectroscopy, but their bisignate nature and more stringent selection rules provide greatly enhanced resolution. Thus, they have proved to be invaluable in the study of many transition metal-containing proteins. For mainly technical reasons, MCD has been limited almost exclusively to the measurement of static samples. But the ability to employ the resolving power of MCD to follow changes at transition metal sites would be a potentially significant advance. We describe here the development of a cuvette holder that allows reagent injection and sample mixing within the 50-mm-diameter ambient temperature bore of an energized superconducting solenoid. This has allowed us, for the first time, to monitor time-resolved MCD resulting from in situ chemical manipulation of a metalloprotein sample. Furthermore, we report the parallel development of an electrochemical cell using a three-electrode configuration with physically separated working and counter electrodes, allowing true potentiometric titration to be performed within the bore of the MCD solenoid
The Effects of Kinesio Tape on Postural Control in Female Athletes With Chronic Ankle Instability
Please refer to the pdf version of the abstract located adjacent to the title
Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis
Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form
Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance
High Frequency electron paramagnetic resonance has been used to observe the
magnetic dipole, M = 1, transitions in the excited
state of the single molecule magnet FeBr. A Boltzmann analysis of the
measured intensities locates it at 24 2 K above the ground
state, while the line positions yield its magnetic parameters D = -0.27 K, E =
0.05 K, and B = -1.3 10 K. D is thus smaller by 8%
and E larger by 7% than for . The anisotropy barrier for is
estimated as 22 K,which is 25% smaller than that for (29 K). These
data also help assign the spin exchange constants(J's) and thus provide a basis
for improved electronic structure calculations of FeBr.Comment: 7 pages, Figs included in text, submitted to PR
Are quasars accreting at super-Eddington rates?
In a previous paper, Collin & Hur\'e (2001), using a sample of Active
Galactic Nuclei (AGN) where the mass has been determined by reverberation
studies (Kaspi et al. 2000), have shown that if the optical luminosity is
emitted by a steady accretion disc, about half of the objects are accreting
close to or higher than the Eddington rate. We conclude here that this result
is unavoidable, unless the masses are strongly underestimated by reverberation
studies, which does not seem to be the case. There are three issues to the
problem: 1. Accretion proceeds at Eddington or super-Eddington rates through
thick discs. Several consequences follow: an anti-correlation between the line
widths of the lines and the Eddington ratios, and a decrease of the Eddington
ratio with an increasing black hole mass. Extrapolated to all quasars, these
results imply that the amount of mass locked in massive black holes should be
larger than presently thought. 2. The optical luminosity is not produced
directly by the gravitational release of energy, and super-Eddington rates are
not required. The optical luminosity has to be emitted by a dense and thick
medium located at large distances from the center (10 to
gravitational radii). It can be due to reprocessing of the X-ray photons from
the central source in a geometrically thin warped disc, or in dense "blobs"
forming a geometrically thick system, which can be a part of the accretion flow
or the basis of an outflow. 3. Accretion discs are completely "non standard".
Presently neither the predictions of models nor the observed spectral
distributions are sufficient to help choosing between these solutions.Comment: 16 pages, 11 figures, accepted in A&
Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex
DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the “Microprocessor”) is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet–visible (UV–vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys–) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys–/Cys–) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8’s optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV–vis absorption spectra of the FeII and FeII–CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron–nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV–vis MCD and near-infrared MCD provide data consistent with this conclusion. UV–vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous–CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform
Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules
We have studied the effect of local Coulomb interactions on the electronic
structure of the molecular magnet Mn12-acetate within the LDA+U approach. The
account of the on-site repulsion results in a finite energy gap and an integer
value of the molecule's magnetic moment, both quantities being in a good
agreement with the experimental results. The resulting magnetic moments and
charge states of non-equivalent manganese ions agree very well with
experiments. The calculated values of the intramolecular exchange parameters
depend on the molecule's spin configuration, differing by 25-30% between the
ferrimagnetic ground state and the completely ferromagnetic configurations. The
values of the ground-state exchange coupling parameters are in reasonable
agreement with the recent data on the magnetization jumps in megagauss magnetic
fields. Simple estimates show that the obtained exchange parameters can be
applied, at least qualitatively, to the description of the spin excitations in
Mn12-acetate.Comment: RevTeX, LaTeX2e, 4 EPS figure
- …