7 research outputs found

    Multi-omic data integration elucidates Synechococcus adaptation mechanisms to fluctuations in light intensity and salinity

    Get PDF
    Synechococcus sp. PCC 7002 is a fast-growing cyanobacterium which flourishes in freshwater and marine environments, owing to its ability to tolerate high light intensity and a wide range of salinities. Harnessing the properties of cyanobacteria and understanding their metabolic efficiency has become an imperative goal in recent years owing to their potential to serve as biocatalysts for the production of renewable biofuels. To improve characterisation of metabolic networks, genome-scale models of metabolism can be integrated with multi-omic data to provide a more accurate representation of metabolic capability and refine phenotypic predictions. In this work, a heuristic pipeline is constructed for analysing a genome-scale metabolic model of Synechococcus sp. PCC 7002, which utilises flux balance analysis across multiple layers to observe flux response between conditions across four key pathways. Across various conditions, the detection of significant patterns and mechanisms to cope with fluctuations in light intensity and salinity provides insights into the maintenance of metabolic efficiency

    Flux-dependent graphs for metabolic networks

    Get PDF
    Cells adapt their metabolic fluxes in response to changes in the environment. We present a framework for the systematic construction of flux-based graphs derived from organism-wide metabolic networks. Our graphs encode the directionality of metabolic fluxes via edges that represent the flow of metabolites from source to target reactions. The methodology can be applied in the absence of a specific biological context by modelling fluxes probabilistically, or can be tailored to different environmental conditions by incorporating flux distributions computed through constraint-based approaches such as Flux Balance Analysis. We illustrate our approach on the central carbon metabolism of Escherichia coli and on a metabolic model of human hepatocytes. The flux-dependent graphs under various environmental conditions and genetic perturbations exhibit systemic changes in their topological and community structure, which capture the re-routing of metabolic fluxes and the varying importance of specific reactions and pathways. By integrating constraint-based models and tools from network science, our framework allows the study of context-specific metabolic responses at a system level beyond standard pathway descriptions

    5 Kontinuität und Wandel: Dauerthemen der Nonkonformität, der Verweigerung, des Protestes und des Widerstandes

    Full text link
    corecore