3,350 research outputs found
Gate control of a quantum dot single-electron spin in realistic confining potentials: anisotropy effects
Among recent proposals for next-generation, non-charge-based logic is the
notion that a single electron can be trapped and its spin can be manipulated
through the application of gate potentials. In this paper, we present numerical
simulations of such spins in single electron devices for realistic (asymmetric)
confining potentials in two-dimensional electrostatically confined quantum
dots. Using analytical and numerical techniques we show that breaking the
in-plane rotational symmetry of the confining potential leads to a significant
effect on the tunability of the g-factor with applied gate potentials. In
particular, anisotropy extends the range of tunability to larger quantum dots.Comment: 7 pages, 13 figure
Patching task-level robot controllers based on a local µ-calculus formula
We present a method for mending strategies for
GR(1) specifications. Given the addition or removal of edges
from the game graph describing a problem (essentially transition
rules in a GR(1) specification), we apply a µ-calculus
formula to a neighborhood of states to obtain a “local strategy”
that navigates around the invalidated parts of an original
synthesized strategy. Our method may thus avoid global resynthesis
while recovering correctness with respect to the new
specification. We illustrate the results both in simulation and
on physical hardware for a planar robot surveillance task
Fluctuation Theorems
Fluctuation theorems, which have been developed over the past 15 years, have
resulted in fundamental breakthroughs in our understanding of how
irreversibility emerges from reversible dynamics, and have provided new
statistical mechanical relationships for free energy changes. They describe the
statistical fluctuations in time-averaged properties of many-particle systems
such as fluids driven to nonequilibrium states, and provide some of the very
few analytical expressions that describe nonequilibrium states. Quantitative
predictions on fluctuations in small systems that are monitored over short
periods can also be made, and therefore the fluctuation theorems allow
thermodynamic concepts to be extended to apply to finite systems. For this
reason, fluctuation theorems are anticipated to play an important role in the
design of nanotechnological devices and in understanding biological processes.
These theorems, their physical significance and results for experimental and
model systems are discussed.Comment: A review, submitted to Annual Reviews in Physical Chemistry, July
2007 Acknowledgements corrected in revisio
The RNA-binding protein hnRNPA2 regulates β-catenin protein expression and is overexpressed in prostate cancer
The RNA-binding protein hnRNPA2 (HNRNPA2B1) is upregulated in cancer, where it controls alternative pre-mRNA splicing of cancer-relevant genes. Cytoplasmic hnRNPA2 is reported in aggressive cancers, but is functionally uncharacterized. We explored the role of hnRNPA2 in prostate cancer (PCa). Methods: hnRNPA2 function/localization/expression in PCa was determined using biochemical approaches (colony forming/proliferation/luciferase reporter assays/flow cytometry/immunohistocytochemistry). Binding of hnRNPA2 within cancer-relevant 3′-UTR mRNAs was identified by bioinformatics. Results: RNAi-mediated knockdown of hnRNPA2 reduced colony forming and proliferation, while hnRNPA2 overexpression increased proliferation of PCa cells. Nuclear hnRNPA2 is overexpressed in high-grade clinical PCa, and is also observed in the cytoplasm in some cases. Ectopic expression of a predominantly cytoplasmic variant hnRNPA2-ΔRGG also increased PCa cell proliferation, suggesting that cytoplasmic hnRNPA2 may also be functionally relevant in PCa. Consistent with its known cytoplasmic roles, hnRNPA2 was associated with 3′-UTR mRNAs of several cancer-relevant mRNAs including β-catenin (CTNNB1). Both wild-type hnRNPA2 and hnRNPA2-ΔRGG act on CTNNB1 3′-UTR mRNA, increasing endogenous CTNNB1 mRNA expression and β-catenin protein expression and nuclear localization. Conclusion: Nuclear and cytoplasmic hnRNPA2 are present in PCa and appear to be functionally important. Cytoplasmic hnRNPA2 may affect the cancer cell phenotype through 3′-UTR mRNA-mediated regulation of β-catenin expression and other cancer-relevant genes
- …