16 research outputs found

    The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

    Full text link
    The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift is derived through a systematic application of the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size

    Analysis of Petri Net Models through Stochastic Differential Equations

    Full text link
    It is well known, mainly because of the work of Kurtz, that density dependent Markov chains can be approximated by sets of ordinary differential equations (ODEs) when their indexing parameter grows very large. This approximation cannot capture the stochastic nature of the process and, consequently, it can provide an erroneous view of the behavior of the Markov chain if the indexing parameter is not sufficiently high. Important phenomena that cannot be revealed include non-negligible variance and bi-modal population distributions. A less-known approximation proposed by Kurtz applies stochastic differential equations (SDEs) and provides information about the stochastic nature of the process. In this paper we apply and extend this diffusion approximation to study stochastic Petri nets. We identify a class of nets whose underlying stochastic process is a density dependent Markov chain whose indexing parameter is a multiplicative constant which identifies the population level expressed by the initial marking and we provide means to automatically construct the associated set of SDEs. Since the diffusion approximation of Kurtz considers the process only up to the time when it first exits an open interval, we extend the approximation by a machinery that mimics the behavior of the Markov chain at the boundary and allows thus to apply the approach to a wider set of problems. The resulting process is of the jump-diffusion type. We illustrate by examples that the jump-diffusion approximation which extends to bounded domains can be much more informative than that based on ODEs as it can provide accurate quantity distributions even when they are multi-modal and even for relatively small population levels. Moreover, we show that the method is faster than simulating the original Markov chain
    corecore