214 research outputs found

    Functional genomics in the stroke-prone spontaneously hypertensive rat: genome wide and candidate gene analysis

    Get PDF
    The stroke-prone spontaneously hypertensive rat (SHRSP) is an inbred model of hypertension. Renal microarrays and functional genomic strategies investigated chromosome 2 candidate hypertension genes, focussing on the oxidative-stress defence gene, glutathione s-transferse mu type 1 (Gstm1). Ingenuity pathway analysis of renal microarrays in 5 and 16-week SHRSP, normotensive Wistar Kyoto (WKY) and chromosome 2 congenic rats identified differential expression of several glutathione cycling genes. The Gstm1 promoter was investigated by luciferase and Transfac bioinformatic analysis, implicating two polymorphism clusters and several transcription factors in reduced SHRSP Gstm1 expression. Recombinant adenoviruses expressing Gstm1 and short-hairpin RNA-interference sequences to reduce Gstm family expression were produced. In-vivo overexpression of Gstm1 did not improve endothelial nitric-oxide bioavailability in SHRSP carotid arteries. Bacterial artificial chromosome and linear expression constructs were purified for production of Gstm1 transgenic rats, putative transgenic rats were screened by PCR. The strategies developed in this project are an example of thorough functional genomic analysis in experimental hypertension research

    A novel homozygous variant extending the peripheral myelin protein 22 by 9 AMino acids causes early-onset Charcot-Marie-Tooth disease with predominant severe sensory ataxia

    Get PDF
    Peripheral myelin protein 22 (PMP22) related neuropathies account for over 50% of inherited peripheral neuropathies. A gene copy variation results in CMT1A (duplication) and hereditary neuropathy with liability to pressure palsies (HNPP; single deletion). Point mutations comprise both phenotypes. The underlying pathological mechanisms are incompletely understood and biallelic mutations of PMP22 are very rare. We describe a 9‐year‐old girl who presented before the age of 1 year with severe locomotor delay. She now requires support for standing and walking in view of her severe sensory ataxia. Strikingly, her muscle power and bulk are close to normal in all segments. Nerve conduction studies showed sensory‐motor velocities below 5 m/s. Genetic analysis revealed a homozygous sequence change in the PMP22 gene causing the loss of termination codon (c.483A > G; p.[*161Trpext*10]), extending the protein by 9 amino acids. Both heterozygous parents have neurophysiological abnormalities consistent with HNPP, consistent with this being a loss‐of‐function mutation. PMP22‐deficient human models are rare but important to decipher the physiological function of the PMP22 protein in vivo. The predominance of large fiber sensory involvement in this and other rare similar cases suggests a pivotal role played by PMP22 in the embryogenesis of dorsal root ganglia in humans

    Transition Metal Carbohydrazide Nitrates: Burn-rate Modifiers for Propellants

    Get PDF
    This paper discusses the synthesis and characterisation of cobalt (Co), nickel (Ni) andcopper (Cu) carbohydrazide nitrates. In differential scanning calorimetry (DSC), the complexesexhibited exothermic decomposition indicating their energetic nature. The commencement ofdecomposition was observed at 220 °C for Ni complex, and at 160 °C for Co complex whereasthat of Cu complex occurred at 75 °C. In view of the better thermal stability, Ni and Co complexeswere selected for further study. The activation energy of decomposition of Ni and Co complexeswere found to be 47 kcal/mol and 60 kcal/mol respectively. Impact and friction sensitivity testresults revealed relatively lower vulnerability of carbohydrazide cobalt nitrate. Its incorporationin an ammonium perchlorate (AP)-based composite propellant led to 9-19 per cent enhancementwhereas that of carbohydrazide nickel nitrate resulted in 28-74 per cent enhancement in burningrates in the pressure range 1.9 MPa to 8.8 MPa. Exothermic decomposition of the coordinationcomplexes on propellant surface and involvement of metal at molecular level formed ondecomposition of the complexes in combustion environment of composite propellant may beattributed to the catalytic effect of this class of compounds on the lines of reported literature

    Pilot phenotype and natural history study of hereditary neuropathies caused by mutations in the HSPB1 gene

    Get PDF
    Mutations in HSPB1 are one of the commonest causes of distal Hereditary Motor Neuropathy (dHMN). Transgenic mouse models of the disease have identified HDAC6 inhibitors as promising treatments for the condition paving the way for human trials. A detailed phenotype and natural history study of HSPB1 neuropathy is therefore required in order to inform the duration and outcome measures of any future trials. Clinical and neurophysiological data and lower limb muscle MRI were collected both prospectively and retrospectively from patients with mutations in HSPB1. The natural history was assessed by recording the weighted Charcot-Marie-Tooth Examination Score (CMTES) at annual intervals in a subset of patients. 20 patients from 14 families were recruited into the study. The average age of onset was in the 4th decade. Patients presented with a length dependent neuropathy but with early ankle plantar flexion weakness. Neurophysiology confirmed a motor neuropathy but also showed sensory nerve involvement in most patients. Cross sectional muscle MRI revealed soleus and medial gastrocnemius fat infiltration as an early signature of mutant HSPB1 disease. In this study neither semi quantitative muscle MRI, the CMTES nor neurophysiology were able to detect disease progression in HSPB1 neuropathy over 1 or 2 years. Further studies are therefore required to identify a suitable biomarker before clinical trials in HSPB1 neuropathy can be undertaken

    Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2.

    Get PDF
    To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation

    High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients.

    Get PDF
    An intronic expansion of a hexanucleotide GGGGCC repeat in the C9ORF72 gene has recently been shown to be an important cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in familial and sporadic cases. The frequency has only been defined in a small number of populations where the highest sporadic rate was identified in Finland (21.1%) and the lowest in mainland Italy (4.1%). We examined the C9ORF72 expansion in a series of 146 Greek ALS cases, 10.95% (n = 16) of cases carried the pathological expansion defined as greater than 30 repeats. In the 10 familial ALS probands, 50% (n = 5) of them carried a pathologically large expansion. In the remaining 136 sporadic ALS cases, 11 were carriers (8.2%). None of the 228 Greek controls carried an expanded repeat. The phenotype of our cases was spinal (13/16) or bulbar (3/16) ALS, the familial cases were all spinal ALS and none of our cases had behavioral frontotemporal dementia. Expansions in the C9ORF72 gene therefore represent a common cause of ALS in Greece and this test will be diagnostically very important to implement in the Greek population. The frequency is higher than other populations with the exception of Finland and this may be due to Greece being a relatively isolated population

    Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications

    Get PDF
    Introduction: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. Areas covered: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. Expert opinion: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants
    • 

    corecore