984 research outputs found

    The Impact of Molecular Polarization on the Electronic Properties of Molecular Semiconductors

    Full text link
    In a molecular semiconductor, the carrier is dressed with a polarization cloud that we treat as a quantum field of Frenkel excitons coupled to it. The consequences of the existence of this electronic polaron on the dynamics of an extra charge in a material like pentacene can thus be evaluated.Comment: 7 pages, 1 figure, LaTe

    Polarization effects in the channel of an organic field-effect transistor

    Full text link
    We present the results of our calculation of the effects of dynamical coupling of a charge-carrier to the electronic polarization and the field-induced lattice displacements at the gate-interface of an organic field-effect transistor (OFET). We find that these interactions reduce the effective bandwidth of the charge-carrier in the quasi-two dimensional channel of a pentacene transistor by a factor of two from its bulk value when the gate is a high-permittivity dielectric such as (Ta2O5)(\textrm{Ta}_{2}\textrm{O}_{5}) while this reduction essentially vanishes using a polymer gate-insulator. These results demonstrate that carrier mass renormalization triggers the dielectric effects on the mobility reported recently in OFETs.Comment: 19 pages, 3 figure

    Phase separation versus supersolid behavior in frustrated antiferromagnets

    Full text link
    We investigate the competition between spin-supersolidity and phase separation in a frustrated spin-half model of weakly coupled dimers. We start by considering systems of hard-core bosons on the square lattice, onto which the low-energy physics of the herein investigated spin model can be mapped, and devise a criterion for gauging the interplay between supersolid order and domain wall formation based on strong coupling arguments. Effective bosonic models for the spin model are derived via the contractor renormalization (CORE) algorithm and we propose to combine a self-consistent cluster mean-field solution with our criterion for the occurrence of phase separation to derive the phase diagram as a function of frustration and magnetic field. In the limit of strong frustration, the model is shown to be unstable toward phase separation, in contradiction with recently published results. However, a region of stable supersolidity is identified for intermediate frustration, in a parameter range not investigated so far and of possible experimental relevance.Comment: 8 pages, 7 figures. Published versio

    Supersolid phase with cold polar molecules on a triangular lattice

    Full text link
    We study a system of heteronuclear molecules on a triangular lattice and analyze the potential of this system for the experimental realization of a supersolid phase. The ground state phase diagram contains superfluid, solid and supersolid phases. At finite temperatures and strong interactions there is an additional emulsion region, in contrast to similar models with short-range interactions. We derive the maximal critical temperature TcT_c and the corresponding entropy S/N=0.04(1)S/N = 0.04(1) for supersolidity and find feasible experimental conditions for its realization.Comment: 4 pages, 4 figure

    Unconventional magnetization plateaus in a Shastry-Sutherland spin tube

    Full text link
    Using density matrix renormalization group (DMRG) and perturbative continuous unitary transformations (PCUTs), we study the magnetization process in a magnetic field for all coupling strengths of a quasi-1D version of the 2D Shastry-Sutherland lattice, a frustrated spin tube made of two orthogonal dimer chains. At small inter-dimer coupling, plateaus in the magnetization appear at 1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal of triplons. However, close to the boundary of the product singlet phase, plateaus of a new type appear at 1/5 and 3/4. They are stabilized by the localization of {\it bound states} of triplons. Their magnetization profile differs significantly from that of single triplon plateaus and leads to specific NMR signatures. We address the possibility to stabilize such plateaus in further geometries by analyzing small finite clusters using exact diagonalizations and the PCUTs.Comment: Final version as published in EP

    On A Cosmological Invariant as an Observational Probe in the Early Universe

    Full text link
    k-essence scalar field models are usually taken to have lagrangians of the form L=−V(ϕ)F(X){\mathcal L}=-V(\phi)F(X) with FF some general function of X=∇μϕ∇μϕX=\nabla_{\mu}\phi\nabla^{\mu}\phi. Under certain conditions this lagrangian in the context of the early universe can take the form of that of an oscillator with time dependent frequency. The Ermakov invariant for a time dependent oscillator in a cosmological scenario then leads to an invariant quadratic form involving the Hubble parameter and the logarithm of the scale factor. In principle, this invariant can lead to further observational probes for the early universe. Moreover, if such an invariant can be observationally verified then the presence of dark energy will also be indirectly confirmed.Comment: 4 pages, Revte

    Mechanisms for Spin-Supersolidity in S=1/2 Spin-Dimer Antiferromagnets

    Full text link
    Using perturbative expansions and the contractor renormalization (CORE) algorithm, we obtain effective hard-core bosonic Hamiltonians describing the low-energy physics of S=1/2S=1/2 spin-dimer antiferromagnets known to display supersolid phases under an applied magnetic field. The resulting effective models are investigated by means of mean-field analysis and quantum Monte Carlo simulations. A "leapfrog mechanism", through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings, is unveiled that accounts for the supersolid behavior.Comment: 12 pages, 10 figure

    Creating Statistically Anisotropic and Inhomogeneous Perturbations

    Get PDF
    In almost all structure formation models, primordial perturbations are created within a homogeneous and isotropic universe, like the one we observe. Because their ensemble averages inherit the symmetries of the spacetime in which they are seeded, cosmological perturbations then happen to be statistically isotropic and homogeneous. Certain anomalies in the cosmic microwave background on the other hand suggest that perturbations do not satisfy these statistical properties, thereby challenging perhaps our understanding of structure formation. In this article we relax this tension. We show that if the universe contains an appropriate triad of scalar fields with spatially constant but non-zero gradients, it is possible to generate statistically anisotropic and inhomogeneous primordial perturbations, even though the energy momentum tensor of the triad itself is invariant under translations and rotations.Comment: 20 pages, 1 figure. Uses RevTeX
    • …
    corecore