22 research outputs found

    A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms

    Get PDF
    Introduction: Combined infections from Candida albicans and Staphylococcus aureus are a leading cause of death in the developed world. Evidence suggests that Candida enhances the virulence of Staphylococcus—hyphae penetrate through tissue barriers, while S. aureus tightly associates with the hyphae to obtain entry to the host organism. Indeed, in a biofilm state, C. albicans enhances the antimicrobial resistance characteristics of S. aureus. The association of these microorganisms is also associated with significantly increased morbidity and mortality. Due to this tight association we hypothesised that metabolic effects were also in evidence. Objectives: To explore the interaction, we used a novel GC-Orbitrap-based mass spectrometer, the Q Exactive GC, which combines the high peak capacity and chromatographic resolution of gas chromatography with the sub-ppm mass accuracy of an Orbitrap system. This allows the capability to leverage the widely available electron ionisation libraries for untargeted applications, along with expanding accurate mass libraries and targeted matches based around authentic standards. Methods: Optimised C. albicans and S. aureus mono- and co-cultured biofilms were analysed using the new instrument in addition to the fresh and spent bacterial growth media. Results: The targeted analysis experiment was based around 36 sugars and sugar phosphates, 22 amino acids and five organic acids. Untargeted analysis resulted in the detection of 465 features from fresh and spent medium and 405 from biofilm samples. Three significantly changing compounds that matched to high scoring library fragment patterns were chosen for validation. Conclusion: Evaluation of the results demonstrates that the Q Exactive GC is suitable for metabolomics analysis using a targeted/untargeted methodology. Many of the results were as expected: e.g. rapid consumption of glucose and fructose from the medium regardless of the cell type. Modulation of sugar-phosphate levels also suggest that the pentose phosphate pathway could be enhanced in the cells from co-cultured biofilms. Untargeted metabolomics results suggested significant production of cell-wall biosynthesis components and the consumption of non-proteinaceous amino-acids

    Rhodococcus rhodochrous DSM 43269 3-Ketosteroid 9α-Hydroxylase, a Two-Component Iron-Sulfur-Containing Monooxygenase with Subtle Steroid Substrate Specificity▿ †

    Get PDF
    This paper reports the biochemical characterization of a purified and reconstituted two-component 3-ketosteroid 9α-hydroxylase (KSH). KSH of Rhodococcus rhodochrous DSM 43269, consisting of a ferredoxin reductase (KshB) and a terminal oxygenase (KshA), was heterologously expressed in Escherichia coli. E. coli cell cultures, expressing both KshA and KshB, converted 4-androstene-3,17-dione (AD) into 9α-hydroxy-4-AD (9OHAD) with a >60% molar yield over 48 h of incubation. Coexpression and copurification were critical to successfully obtain pure and active KSH. Biochemical analysis revealed that the flavoprotein KshB is an NADH-dependent reductase using flavin adenine dinucleotide as a cofactor. Reconstitution experiments confirmed that KshA, KshB, and NADH are essential for KSH activity with steroid substrates. KSH hydroxylation activity was inhibited by several divalent metal ions, especially by zinc. The reconstituted KSH displayed subtle steroid substrate specificity; a range of 3-ketosteroids, i.e., 5α-Η, 5β-Η, Δ1, and Δ4 steroids, could act as KSH substrates, provided that they had a short side chain. The formation of 9OHAD from AD by KSH was confirmed by liquid chromatography-mass spectrometry analysis and by the specific enzymatic conversion of 9OHAD into 3-hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione using 3-ketosteroid Δ1-dehydrogenase. Only a single KSH is encoded in the genome of the human pathogen Mycobacterium tuberculosis H37Rv, shown to be important for survival in macrophages. Since no human KSH homolog exists, the M. tuberculosis enzyme may provide a novel target for treatment of tuberculosis. Detailed knowledge about the biochemical properties of KSH thus is highly relevant in the research fields of biotechnology and medicine

    Structural Features in the KshA Terminal Oxygenase Protein That Determine Substrate Preference of 3-Ketosteroid 9α-Hydroxylase Enzymes

    Get PDF
    Rieske nonheme monooxygenase 3-ketosteroid 9α-hydroxylase (KSH) enzymes play a central role in bacterial steroid catabolism. KSH is a two-component iron-sulfur-containing enzyme, with KshA representing the terminal oxygenase component and KshB the reductase component. We previously reported that the KshA1 and KshA5 homologues of Rhodococcus rhodochrous DSM43269 have clearly different substrate preferences. KshA protein sequence alignments and three-dimensional crystal structure information for KshAH37Rv of Mycobacterium tuberculosis H37Rv served to identify a variable region of 58 amino acids organized in a β sheet that is part of the so-called helix-grip fold of the predicted KshA substrate binding pocket. Exchange of the β sheets between KshA1 and KshA5 resulted in active chimeric enzymes with substrate preferences clearly resembling those of the donor enzymes. Exchange of smaller parts of the KshA1 and KshA5 β-sheet regions revealed that a highly variable loop region located at the entrance of the active site strongly contributes to KSH substrate preference. This loop region may be subject to conformational changes, thereby affecting binding of different substrates in the active site. This study provides novel insights into KshA structure-function relationships and shows that KSH monooxygenase enzymes are amenable to protein engineering for the development of biocatalysts with improved substrate specificities

    Experimental investigation of the wake of a lifting wing with cut-in sinusoidal trailing edges

    Get PDF
    The wake behind a NACA0012 wing at incidence with cut-in sinusoidal trailing edges is experimentally investigated. A wing model with interchangeable trailing edges is used to study their impact on the wake properties. Both vertical and spanwise traverses of hot wires are done at different downstream positions to obtain the downstream evolution of statistical properties and to perform spectral analysis. Stereoscopic particle image velocimetry is used to study the flow structure in a spanwise/cross-stream plane. Spanwise inhomogeneity of the velocity deficit and of the wake width is observed and explained by the presence of a spanwise/cross-stream flow induced by the cut-in modifications. Spectral analysis shows a decrease of shedding intensity with a shorter trailing-edge wavelength, with a reduction of up to 57% when compared to a straight blunt wing. Blunt sinusoidal trailing edges exhibit a reduction of spanwise correlation compared to a blunt straight one. A sharp cut-in design is also studied, which exhibits a more broadband shedding spike at a lower frequency

    Experimental Investigation of Vortex Flows Behind a Segmented Blunt Trailing Edge

    No full text

    Experimental investigation of the wake of a lifting wing with cut-in sinusoidal trailing edges

    No full text
    The wake behind a NACA0012 wing at incidence with cut-in sinusoidal trailing edges (TE) is experimentally investigated. A wing model with interchangeable trailing edges is used to study their impact on the wake properties. Both vertical and span-wise traverses of hot-wires are done at different downstream positions, to obtain the downstream evolution of statistical properties and to perform spectral analysis. Stereoscopic particle image velocimetry is used to study the flow structure in a span-wise/cross-stream plane. Span-wise inhomogeneity of the velocity deficit and of the wake width is observed and explained by the presence of a span-wise/cross-stream flow induced by the cut-in modifications. Spectral analysis shows a decrease of shedding intensity with shorter TE wavelength, with up to 57% reduction when compared to a straight blunt wing. Blunt sinusoidal TEs offer a reduction of span-wise correlation compared to the blunt straight one, which is mitigated when compared to an unmodified wing. A sharp cut-in design is also studied, that exhibits a more broad-band shedding spike at a lower frequency

    Wake Control Based on Spanwise Sinusoidal Perturbations

    No full text
    corecore