44 research outputs found

    Graphene oxide membranes for trace hydrocarbon contaminant removal from aqueous solution

    Get PDF
    The aim of this paper is to shed light on the application of graphene oxide (GO) membranes for the selective removal of benzene, toluene, and xylene (BTX) from wastewater. These molecules are present in traces in the water produced from oil and gas plants and are treated now with complex filtration systems. GO membranes are obtained by a simple, fast, and scalable method. The focus of this work is to prove the possibility of employing GO membranes for the filtration of organic contaminants present in traces in oil and gas wastewater, which has never been reported. The stability of GO membranes is analyzed in water solutions with different pH and salinity. Details of the membrane preparation are provided, resulting in a crucial step to achieve a good filtration performance. Material characterization techniques such as electron microscopy, x-ray diffraction, and infrared spectroscopy are employed to study the physical and chemical structure of GO membranes, while gas chromatography, UV-visible spectroscopy, and gravimetric techniques allow the quantification of their filtration performance. An impressive rejection of about 90% was achieved for 1 ppm of toluene and other pollutants in water, demonstrating the excellent performance of GO membranes in the oil and gas field

    Antimicrobial finish of textiles by chitosan UV-curing

    No full text

    Cotton Filter Fabrics Functionalization by Chitosan UV-grafting for Removal of Dyes

    No full text
    Wastewater effluents from textile industry mainly contain dyes used in the dyeing or printing of textiles yarns or fabrics. A lot of technologies can be adopted for dye removal from wastewaters, including biological treatments based on activated sludge, adsorption on activated carbon, or membrane processes. Nevertheless, none of these methods is performing toward all classes of dyes; treatment plants of great dimensions and difficult handling can be required, while costs can be prohibitive. In a previous work we cationized cotton obtaining a strong improvement of dyes adsorption. In the present work, a cotton fabric was more eco-friendly functionalized by chitosan UV grafting and used as dyes adsorbent. The process parameters for the fabric treatment were optimized in terms of chitosan add-on, impregnation time, temperature, pH, radiation time and curing intensity. The cotton grafted by chitosan was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared analysis in Attenuated Total Reflection (FTIR-ATR) and X-ray Photoelectron Spectroscopy (XPS). The material was then tested towards different dye classes: acid, reactive and direct dyes. Batch, kinetic as well as continuous flow assessment tests were carried out, evaluating the adsorption capacity by spectrophotometric measurements. Moreover the influence of pH as well as temperature on the adsorbent capacity of the functionalized cotton were investigated. The material showed good adsorption capacity and very high adsorption rate toward all the investigated dyes. Moreover, by assembling the functionalized cotton in a filter form, good adsorption capacity is ensured even at 25 degrees C, with good behaviour in terms of filter exhaustion and pressure drop while a positive influence on adsorption capacity was displayed in acid conditions. Finally, regeneration tests by NaOH solution were carried out, with a good release of the adsorbed dye. In conclusion, obtained results show good perspectives for chitosan treated cotton use in wastewater filtration

    Silk Grafting with Methacrylic Monomers: Process Optimization and Comparison

    No full text
    碩士[[abstract]]本研究應用了以靜電力場輔助定電位電鍍法製備普魯士藍 (PB)、聚苯胺(PAni) 以及其複合 (PB/PAni) 微米構形薄膜,並比較經由接觸起電程序與未經由接觸起電程序之工作電極於電鍍過程中獲得之 i-t曲線。 製備普魯士藍 (PB)、聚苯胺 (PAni) 以及其複合 (PB/PAni) 微米構形薄膜之實驗條件分別控制在相同電位下,而析鍍不同之時間參數。 接著將所製備出具微米構形之工作電極以光學顯微鏡(Optical microscope, OM)、電子顯微鏡 (Scanning Electron Microscope, SEM) 與表面輪廓儀( Surfcorder ) 進行表面形態的初步觀察以及實際的高低差測量。 並將普魯士藍 (PB) 薄膜總模厚定義為 T ( Thickness ) 、微米構形內外高低差為 ∆H,將 ∆H/T × 100% 定義為薄膜之選擇性。 另外,於本實驗觀察到製備具有微米構形薄膜其電致色變性質皆較優於相同電鍍參數平整之薄膜,因此本實驗做了 EIS 阻抗分析並將獲得之數據作出在複數平面 Z" 對Z'' 的 Nyquist 圖接著選取適合之等效電路圖並利用ZView進行擬合將會獲得 Rs 、 Rct 之阻抗值。由數值可知道具微米構形之薄膜其電荷轉移所需之活化能 (Rct) 相較於平整薄膜還要小。[[abstract]]The misropattern of Prussian Blue, Polyaniline and composite Prussian Blue/Polyaniline thin film is prepared by potentiostatic method. In comparison, two types of working electrodes show different i-t curve during electrodepostion. One of these working electrodes is attached by electrostatic film, and the other one is not. Experiment is executed by constant potential for different time. The resultant micropattern of Prussian Blue have been characterized by means of Optical microscope (OM), Scanning Electron Microscope (SEM) and Surfcorder analysis. The selectivity of micropattern defined formula as ΔH/Tt×100%, where T is thickness of Prussian Blue film, ΔH is concave micropattern of height. In this study, It is found that with the same electrodeposition time, micropatterned thin films possess that electrochromic properties superior to the thin films without micropatterns. Therefore,impedance analysis of electrochemical impedance spectroscopy for electrochromic thin films has been carried out in the study.And will obtain Rs,Rct of impedance value. It is found with the charge transfer resistance values, micropatterned thin films possess that was also lower than the thin films without micropatterns.[[tableofcontents]]目錄 中文摘要Ι 英文摘要Ⅱ 目錄IV 圖目錄VI 表目錄XII 第一章 前言1 第二章 實驗7 2.1 實驗藥品7 2.2 實驗儀器8 2.3 實驗架構與規劃9 2.4 壓克力樹脂微米構形/聚乙烯之靜電膜介紹10 2.5 ITO 玻璃工作電極之接觸起電程序11 2.6 實驗步驟15 2.6.1 清洗 ITO 導電玻璃15 2.6.2 ITO/PB微米構形薄膜製備17 2.6.3 ITO/PAni微米構形薄膜製備19 2.6.4 ITO/PB/PAni微米構形複合薄膜製備21 2.7普魯士藍、聚苯胺以及其複合微米構形薄膜分析23 2.7.1實驗參數與命名23 2.7.2 薄膜表面形態觀察24 2.7.3表面輪廓儀25 2.7.4電化學分析30 2.7.5紫外光-可見光光譜32 第三章 結果與討論 普魯士藍34 3.1 ITO/Glass 基材與 mPA /PE 靜電膜接觸起電之相對電性34 3.2 ITO/Glass 基材與 mPA /PE 靜電膜接觸起電時間最適化37 3.3定電位電鍍法對普魯士藍微米構形之最適化40 3.4普魯士藍微米構形之電致色變性質51 3.5 電化學阻抗光譜圖分析58 第四章 結果與討論 聚苯胺66 4.1定電位電鍍法對聚苯胺微米構形之最適化66 4.2聚苯胺微米構形之電致色變性質75 4.3 電化學阻抗光譜圖分析83 第五章 結果與討論 普魯士藍/聚苯胺90 5.1定電位電鍍法對普魯士藍/聚苯胺微米構形之最適化 90 5.2普魯士藍/聚苯胺微米構形之電致色變性質100 5.3 電化學阻抗光譜圖分析109 第六章 結論117 參考文獻119 圖目錄 圖 1-1、聚苯胺化學結構通式。4 圖 1-2、不同氧化態結構。4 圖 2-1、實驗流程圖。9 圖 2-2、具有壓克力樹酯微米構形之PE薄膜。10 圖 2-3、 mPA/PE 3D 示意圖。11 圖 2-4、為微米構形普魯士藍薄膜之製作流程圖。12 圖 2-5、為微米構形聚苯胺薄膜之製作流程圖。13 圖 2-6、為微米構形普魯士藍/聚苯胺複合薄膜之製作流程圖。14 圖 2-7、ITO 導電玻璃之示意圖。15 圖 2-8、製作 ITO 導電玻璃工作電極之流程圖。16 圖 2-9、三極式電鍍系統示意圖。17 圖 2-10、製備 PB 薄膜之實驗流程圖。18 圖 2-11、製備 PAni 薄膜之實驗流程圖。20 圖 2-12、製備 PB/PAni 薄膜之實驗流程圖。22 圖 2-13、普魯士藍微米構形薄膜。24 圖 2-14、聚苯胺微米構形薄膜。24 圖 2-15、普魯士藍/聚苯胺微米構形薄膜。25 圖 2-16、普魯士藍量測整體膜厚示意圖。26 圖 2-17、普魯士藍量測微米構形高低差示意圖。26 圖 2-18、聚苯胺量測整體膜厚示意圖。27 圖 2-19、聚苯胺量測微米構形高低差示意圖。27 圖 2-20、以表面輪廓儀量測定電位電鍍,參數為 E = 0.5 V, t = 50 s 所電鍍之普魯士藍微米構形薄膜。28 圖 2-21、表面輪廓儀測量方法與數據呈現 2D 圖形。 28 圖 2-22、表面輪廓儀測量方法與數據呈現 3D 圖形。 29 圖 2-23、UV/Vis 實驗裝置圖。32 圖 3-1、ITO/Glass 與 mPA/PE 進行接觸起電過程。35 圖 3-2、各種物質之接觸代電系列。35 圖 3-3、不同電荷極性之帶電體與接觸起電工作電極之交互作用。 36 圖 3-4、mPA/PE 與 ITO 玻璃工作電極接觸時間,對普魯士藍電鍍電量的影響。38 圖 3-5、將 ITO 玻璃工作電極上之 mPA/PE 靜電膜撕去,並放置於空氣中數天,觀察其對普魯士藍電鍍電量的影響。39 圖 3-6、定電位電鍍普魯士藍薄膜,觀察經接觸起電程序之工作電極與原始工作電極之電化學行為。42 圖 3-7、(a)半球形擴散區將反應離子擴散至核種。(b)擴散區開始重疊。(C)發展成線性擴散條件。43 圖 3-8、(a)低濃度成核機制。(b) 高濃度成核機制。(C)高低濃度成核機制對應之定電位圖形。43 圖 3-9、於 0.5V 定電位電鍍下不同時間參數之 光學顯微鏡圖。(a)~(e) 分別為電鍍 10,20,30,40,50s。44 圖 3-10(a)、於 0.5V 定電位電鍍 10s 之 SEM 圖。45 圖 3-10(b)、於 0.5V 定電位電鍍 20s 之 SEM 圖。46 圖 3-10(c)、於 0.5V 定電位電鍍 30s 之 SEM 圖。47 圖 3-10(d)、於 0.5V 定電位電鍍 40s 之 SEM 圖。48 圖 3-10(e)、於 0.5V 定電位電鍍 50s 之 SEM 圖。49 圖 3-11、於 0.5V 定電位電鍍下不同時間參數之表面輪廓量測。50 圖 3-12、不同析鍍時間下 (10,30,50s) ,於電解質0.1M KCl+0.01MHCl中所形成的普魯士藍薄膜之循環伏安圖,其掃描速率為50mVs-1。53 圖 3-13、不同條件之工作電極於不同析鍍時間下 (30,50s),於電解質為 0.1M KCl+0.01MHCl中所形成的普魯士藍薄膜之階梯電位圖。54 圖 3-14、不同析鍍時間下 (10,30,50s),於電解質為0.1M KCl+0.01MHCl中所形成的普魯士藍薄膜之著色態全波長光譜圖,掃描範圍為 400-800nm。54 圖 3-15、不同析鍍時間下 (10,30,50s),於電解質為0.1M KCl+0.01MHCl中所形成的普魯士藍薄膜之應答時間圖,定波長於 700nm。55 圖 3-16、經接觸起電與原始之工作電極其著色/去色之應答時間對著色電量之比較。55 圖 3-17、經接觸起電與原始之工作電極其著色/去色之應答時間對穿透率之比較。 56 圖 3-18、藉由 ZView 程式擬合兩種不同製備方法之普魯士藍薄膜於0.1M KCl + 0.01MHCl水溶液中的Nyquist圖。(a)(c)(e) 為經接觸起電之工作電極,分別為電鍍 10,30,50s。(b)(d)(f) 則反之。62 圖 3-19、實驗模擬之等效電路圖。 63 圖 3-20、兩種不同製備方法之普魯士藍薄膜於0.1M KCl + 0.01MHCl水溶液中進行阻抗分析。(a)全頻區(b)高頻區。64 圖 4-1、定電位電鍍聚苯胺薄膜,觀察經接觸起電程序之工作電極與原始工作電極之電化學行為。68 圖 4-2、於 0.5V 定電位電鍍下不同時間參數之 光學顯微鏡圖。(a)~(e) 分別為電鍍 80,100,120,140,160s。 69 圖 4-3(a)、於 0.8V 定電位電鍍 80s 之 SEM 圖。70 圖 4-3(b)、於 0.8V 定電位電鍍 100s 之 SEM 圖。71 圖 4-3(c)、於 0.8V 定電位電鍍 120s 之 SEM 圖。72 圖 4-3(d)、於0.8V 定電位電鍍 140s 之 SEM 圖。73 圖 4-3(e)、於 0.8V 定電位電鍍 160s 之 SEM 圖。74 圖 4-4、不同析鍍時間下 (80,120,160s) ,於電解質0.1M KCl+0.01M HCl中所形成的聚苯胺薄膜之循環伏安圖,其掃描速率為50mVs-1。78 圖 4-5、不同條件之工作電極於不同析鍍時間下 (80,120,160s),於電解質為 0.1M KCl+0.01MHCl中所形成的聚苯胺薄膜之階梯電位圖。78 圖 4-6、不同析鍍時間下 (80,120,160s),於電解質為0.1M KCl+0.01MHCl中所形成的聚苯胺薄膜之著色態全波長光譜圖,掃描範圍為 400-800nm。79 圖 4-7、不同析鍍時間下 (80,120,160s),於電解質為0.1M KCl+0.01MHCl中所形成的聚苯胺薄膜之應答時間圖,定波長於 700nm。79 圖 4-8、經接觸起電與原始之工作電極其著色/去色之應答時間對著色電量之比較。80 圖 4-9、經接觸起電與原始之工作電極其著色/去色之應答時間對穿透率之比較。80 圖 4-10、藉由 ZView 程式擬合兩種不同製備方法之聚苯胺薄膜於0.1M KCl + 0.01MHCl水溶液中的Nyquist圖。(a)(c)(e) 為經接觸起電之工作電極,聚苯胺分別為電鍍 80,120,160s。(b)(d)(f) 則反之。 86 圖 4-11 實驗模擬之等效電路圖。87 圖 4-12、同製備方法之聚苯胺薄膜於0.1M KCl + 0.01MHCl水溶液中進 行阻抗分析。(a)全頻區(b)高頻區。88 圖 5-1、定電位電鍍普魯士藍/聚苯胺薄膜,觀察經接觸起電程序之工作電極與原始工作電極之電化學行為。93 圖 5-2、於 0.8V 定電位電鍍聚苯胺薄膜且不同析鍍時間之光學顯微鏡圖,並給予一著色/去色電位觀察其複合薄膜之變化。(a) 為著色電位 0.5V、(b) 為去色電位 -0.2V。94 圖 5-3(a)、普魯士藍/聚苯胺微米構形複合薄膜之聚苯胺薄膜於定電位電鍍不同時間參數之 SEM 圖。聚苯胺 E=0.8V,t=80s、普魯士藍 E=0.5V,t=10s。95 圖 5-3(b)、普魯士藍/聚苯胺微米構形複合薄膜之聚苯胺薄膜於定電位電鍍不同時間參數之 SEM 圖。聚苯胺 E=0.8V,t=100s、普魯士藍 E=0.5V,t=10s。96 圖 5-3(c)、普魯士藍/聚苯胺微米構形複合薄膜之聚苯胺薄膜於定電位電鍍不同時間參數之 SEM 圖。聚苯胺 E=0.8V,t=120s、普魯士藍 E=0.5V,t=10s。97 圖 5-3(d)、普魯士藍/聚苯胺微米構形複合薄膜之聚苯胺薄膜於定電位電鍍不同時間參數之 SEM 圖。聚苯胺 E=0.8V,t=140s、普魯士藍 E=0.5V,t=10s。98 圖 5-3(e)、普魯士藍/聚苯胺微米構形複合薄膜之聚苯胺薄膜於定電位電鍍不同時間參數之 SEM 圖。聚苯胺 E=0.8V,t=160s、普魯士藍 E=0.5V,t=10s。99 圖 5-4、不同析鍍時間下 (80,120,160s) ,於電解質0.1M KCl+0.01MHCl中所形成的普魯士藍/聚苯胺複合薄膜之循環伏安圖,其掃描速率為50mVs-1。103 圖 5-5、不同條件之工作電極於不同析鍍時間下 (80,120,160s),於電解質為 0.1M KCl+0.01MHCl中所形成的普魯士藍/聚苯胺複合薄膜之階梯電位圖。103 圖 5-6、不同析鍍時間下 (80,120,160s),於電解質為0.1M KCl+0.01MHCl中所形成的普魯士藍/聚苯胺複合薄膜之著色態全波長光譜圖,掃描範圍為 400-800nm。104 圖 5-7、不同析鍍時間下 (80,120,160s),於電解質為0.1M KCl+0.01MHCl中所形成的普魯士藍複合薄膜之應答時間圖,定波長於 700nm。104 圖 5-8、經接觸起電與原始之工作電極其著色/去色之應答時間對著色電量之比較。105 圖 5-9、經接觸起電與原始之工作電極其著色/去色之應答時間對穿透率之比較。 105 圖 5-10、藉由 ZView 程式擬合兩種不同製備方法之普魯士藍/聚苯胺複合薄膜於0.1M KCl + 0.01MHCl水溶液中的Nyquist圖。(a)(c)(e) 為經接觸起電之工作電極,聚苯胺分別為電鍍 80,120,160s。(b)(d)(f) 則反之。113 圖 5-11 實驗模擬之等效電路圖。114 圖 5-12、兩種不同製備方法之普魯士藍/聚苯胺複合薄膜於0.1M KCl + 0.01MHCl水溶液中進行阻抗分析。(a)全頻區(b)高頻區。115 表目錄 表 2-1 實驗條件與命名列表23 表 2-2、UV/VIS測得之參數數值。33 表 3-1、在階梯電位中所反應之電量以及表面輪廓儀量測之厚度。56 表 3-2、UV/VIS吸收光譜所反映出的著色與去色的吸收度與應答時間以及著色效率。57 表 3-3、阻抗分析之數值。65 表 4-1、在階梯電位中所反應之電量。81 表 4-2、UV/VIS吸收光譜所反映出的著色與去色的吸收度與應答時間以及著色效率。82 表 4-3、阻抗分析之數值。89 表 5-1、具微米構形之普魯士藍/聚苯胺複合薄膜其內外元素分析。106 表 5-2、在階梯電位中所反應之電量。107 表 5-3、UV/VIS吸收光譜所反映出的著色與去色的吸收度與應答時間以及著色效率。108 表 5-4、阻抗分析之數值。116[[note]]學號: 601400400, 學年度: 10

    Glycerol in comparison with ethanol in alcohol-assisted dyeing

    No full text
    The dyeing processes can be reformulated to reduce the environmental pollution with economic advantages by the substitution of most auxiliary products with low cost, non-toxic and biodegradable products derived from natural sources. In a previous work a chemical substitution study was carried out with ethanol and the results showed a favorable effect of ethanol addition, at about 1-3% v/v, on the dye uptake, with some differences depending on fiber nature and dye class. In the present study glycerol was considered as alternative to ethanol due to the very low volatility and high boiling point which make safer its use in industry. The effect of glycerol introduction without other additives in isothermal dyeing of various fiber yarns (wool, cotton, polyester, nylon 6 and acrylic) was experimented and compared with that of ethanol. Moreover the equilibrium data obtained were correlated with contact angle measurements of water-glycerol solutions on the yarns. Glycerol, like ethanol, is able to improve the dye uptake. In the case of synthetic fibers the wetting effect was confirmed by a minimum of interfacial tension in the range 1-3% v/v of glycerol in water. However in the case of wool and cotton other effects should be considered, involving the glycerol penetration into the fiber structure favored by hydrogen bonds formation. Finally environmental benefits and cost savings arising from substitution of auxiliary agents with glycerol were considered and some advantages of glycerol in comparison with ethanol were highlighted
    corecore