215 research outputs found

    Digital planning of composite customized veneers using Digital Smile Design: Evaluation of its accuracy and manufacturing

    Get PDF
    Objectives: This study aimed to evaluate the production of customized composite veneers starting from a two-dimensional (2D) digital preview using the Digital Smile System (DSS). Material and Methods: A photographic examination of 30 patients was performed by taking two digital pictures of the face and a digital preview through the DSS. Moreover, optical scans of the dental arches were obtained and the data were entered into a three-dimensional (3D) software to prepare a virtual preview. The standard tessellation language files were sent for production using CAD-CAM technology. The Friedman test, Bonferroni, and Dunn post hoc tests were used, comparing the linear measurements of the 2D and 3D plans and the final veneers (α =.05). Results: Significant differences emerged between the pictures and digital scans on the mesial–distal widths of the lateral incisors and canine. Linear measurements in the 2D plan were significantly different from those of the 3D plan, except for the height measures of incisors. No significant changes were found on comparing the parameters of the 2D and 3D plans with those of the final pieces. Conclusions: The customized veneers were clinically adequate and similar to 2D and 3D plans, although significant differences emerged between the picture and digital scans as well as between the 2D and 3D plans

    The hidden information in patient-reported outcomes and clinician-assessed outcomes: multiple sclerosis as a proof of concept of a machine learning approach

    Get PDF
    Machine learning (ML) applied to patient-reported (PROs) and clinical-assessed outcomes (CAOs) could favour a more predictive and personalized medicine. Our aim was to confirm the important role of applying ML to PROs and CAOs of people with relapsing-remitting (RR) and secondary progressive (SP) form of multiple sclerosis (MS), to promptly identifying information useful to predict disease progression. For our analysis, a dataset of 3398 evaluations from 810 persons with MS (PwMS) was adopted. Three steps were provided: course classification; extraction of the most relevant predictors at the next time point; prediction if the patient will experience the transition from RR to SP at the next time point. The Current Course Assignment (CCA) step correctly assigned the current MS course with an accuracy of about 86.0%. The MS course at the next time point can be predicted using the predictors selected in CCA. PROs/CAOs Evolution Prediction (PEP) followed by Future Course Assignment (FCA) was able to foresee the course at the next time point with an accuracy of 82.6%. Our results suggest that PROs and CAOs could help the clinician decision-making in their practice

    Repeatability of dental shade by digital spectrophotometry in current, former, and never smokers

    Get PDF
    Cigarette smoking contributes to poor oral health and dental discoloration. Therefore, stopping smoking may translate into measurable amelioration of dental shade indices. We compared dental shade parameters by digital spectrophotometry among current, former, and never smokers and verified their repeatability at 7 and 30 days. Dental shade parameters (CIE L*a*b* and corresponding whiteness index for dentistry-WID) were measured in current, former, and never smokers with a digital spectrophotometer (Vita Easyshade V) on three separate study visits: at baseline (day 0), at day 7, and day 30. Dental shade parameters were analyzed in 18 current, 18 former, and 20 never smokers. The repeatability of shade parameters was consistent in current, former, and never smokers. L*, a*, b*, and WID show significant short and long-term repeatability (p < 0.0001, by regression analyses). The mean (± SD) WID score of 13.42 (± 4.9) in current smokers was significantly lower compared to the WID score of 20.38 (± 5.3) in never smokers (p = 0.001). No significant differences were observed between current and former smokers and between former smokers and former smokers. Dental shade measurements by digital spectrophotometry were highly reproducible and showed that teeth whiteness of current smokers is substantially inferior compared to never smokers. Objective discrimination of dental shade can be a valuable regulatory science endpoint for investigating oral hygiene and dental aesthetics of consumer care products, smoking cessation medications, and tar-free tobacco products (e-cigarettes, heated tobacco products, oral nicotine products) for cigarette substitution. Clinical trial registration: the study was not registered in ClinicalTrials.gov considering that it is a pilot study, parts of a larger project with ID: NCT04649645

    “Re-Culturing” Teacher Education: Inquiry, Evidence, and Action

    Get PDF
    Currently the press to make policy and practice decisions on the basis of evidence is being coupled with recognition that real change requires shifts in organizational culture. Consequently, there are now many efforts to “re-culture” organizations by making evidence central to decision making. In this article, the authors problematize the notion of a “culture of evidence” in teacher education. Then the article identifies four key aspects involved in efforts to create a culture of evidence at one institution over a five-year period: (1) development of a portfolio of studies about processes and outcomes; (2) recognition that teacher education always poses values questions as well as empirical questions; (3) an exploratory, open-ended approach to evidence construction; and, (4) multiple structures that institutionalize evidence collection and use locally and beyond. The authors suggests that building cultures of evidence has the potential to be transformative in teacher education, but only if challenges related to sustainability, complexity, and balance are addressed

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform

    Get PDF
    Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three - encoding tape-measure proteins, lysins, and minor tail proteins - are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education. © 2006 Hatfull et al

    Curriculum policy reform in an era of technical accountability: 'fixing' curriculum, teachers and students in English schools

    Get PDF
    Drawing on a Levinasian ethical perspective, the argument driving this paper is that the technical accountability movement currently dominating the educational system in England is less than adequate because it overlooks educators’ responsibility for ethical relations in responding to difference in respect of the other. Curriculum policy makes a significant contribution to the technical accountability culture through complicity in performativity, high-stakes testing and datafication, at the same time as constituting student and teacher subjectivities. I present two different conceptualizations of subjectivity and education, before engaging these in the analysis of data arising from an empirical study which investigated teachers’ and stakeholders’ experiences of curriculum policy reform in ‘disadvantaged’ English schools. The study’s findings demonstrate how a prescribed programme of technical curriculum regulation attempts to ‘fix’ or mend educational problems by ‘fixing’ or prescribing educational solutions. This not only denies ethical professional relations between students, teachers and parents, but also deflects responsibility for educational success from government to teachers and hastens the move from public to private educational provision. Complying with prescribed curriculum policy requirements shifts attention from broad philosophical and ethical questions about educational purpose as well as conferring a violence by assuming control over student and teacher subjectivities

    Reduced stability of mRNA secondary structure near the translation-initiation site in dsDNA viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated a selection pressure for reduced mRNA secondary-structure stability near the start codon of coding sequences. This selection pressure can be observed in bacteria, archaea, and eukaryotes, and is likely caused by the requirement of efficient translation initiation in cellular organism.</p> <p>Results</p> <p>Here, we surveyed the complete genomes of 650 dsDNA virus strains for signals of reduced stability of mRNA secondary structure near the start codon. Our analysis included viruses infecting eukaryotic, prokaryotic, and archaeic hosts. We found that many viruses showed evidence for reduced mRNA secondary-structure stability near the start codon. The effect was most pronounced in viruses infecting prokaryotes, but was also observed in viruses infecting eukaryotes and archaea. The reduction in stability generally increased with increasing genomic GC content. For bacteriophage, the reduction was correlated with a corresponding reduction of stability in the phage hosts.</p> <p>Conclusions</p> <p>We conclude that reduced stability of the mRNA secondary structure near the start codon is a common feature for dsDNA viruses, likely driven by the same selective pressures that cause it in cellular organisms.</p

    Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Get PDF
    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions

    HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells

    Get PDF
    Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES) cells to facilitate an epithelial-mesenchymal transition (EMT), invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood.To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa.Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic progression and in the maintenance of a stem-like state. Our results also suggest that HMGA1 or downstream pathways could be rational therapeutic targets in metastatic, poorly differentiated colon cancer
    corecore