4 research outputs found

    Opto-Magnetic Method for Epstein - Barr Virus and Cytomegalovirus Detection in Blood Plasma Samples

    No full text
    Motivated by characterization of paramagnetic materials (Al, Mn and Ti) and diamagnetic materials (Cu, C and Zn) by opto-magnetic method that is based on light-matter interaction using digital imaging, we present results of Epstein-Barr virus (EBV) and cytomegalovirus (CMV) detection in blood plasma. To investigate light-blood plasma interaction we use wavelength difference of diffuse white light and reflected polarized light in red and blue channels of digital images (opto-magnetic method). Digital images of samples are analyzed by spectral convolution algorithm for light-matter interaction analysis. Since opto-magnetic method can detect very small difference between normal and pathological tissue states it is advantageous in comparison with classical methods. Especially it is important for early detection of suspicious tissue states and detection of viral infection presence in plasma. We compared our results with results of standard biomedical test for EBV and CVM, as a reference, and found out for group of 40 samples significant correlation of 93. 6%

    Opto-Magnetic Method for Epstein - Barr Virus and Cytomegalovirus Detection in Blood Plasma Samples

    No full text
    Motivated by characterization of paramagnetic materials (Al, Mn and Ti) and diamagnetic materials (Cu, C and Zn) by opto-magnetic method that is based on light-matter interaction using digital imaging, we present results of Epstein-Barr virus (EBV) and cytomegalovirus (CMV) detection in blood plasma. To investigate light-blood plasma interaction we use wavelength difference of diffuse white light and reflected polarized light in red and blue channels of digital images (opto-magnetic method). Digital images of samples are analyzed by spectral convolution algorithm for light-matter interaction analysis. Since opto-magnetic method can detect very small difference between normal and pathological tissue states it is advantageous in comparison with classical methods. Especially it is important for early detection of suspicious tissue states and detection of viral infection presence in plasma. We compared our results with results of standard biomedical test for EBV and CVM, as a reference, and found out for group of 40 samples significant correlation of 93. 6%
    corecore