47 research outputs found

    Raman spectroscopy of nerve fibers. A study of membrane lipids under steady state conditions.

    Get PDF
    The molecular structures of different nerve fibers kept in good physiological conditions were studied by laser Raman spectroscopy. For myelinated nerves like the rat sciatic nerve, the Raman spectrum is dominated by bands due to the lipid component of the myelin sheath. The temperature dependence of these bands does not reveal any thermotropic phase transition between 0 and 40 degrees C. There is, however, with temperature, a linear increase in the intermolecular disorder that is accompanied by an increase in the number of gauche bonds of the phospholipid acyl chains. For unmyelinated nerves such as the lobster leg nerve, the C-H stretching region of the Raman spectrum is covered by bands arising from the protein component of the axoplasm. However, for the garfish olfactory nerve that has a high density of excitable membranes, phospholipid bands are observed and can be used as intrinsic structural probes of the excitable membranes. The relative intensity of these bands is also temperature dependent

    Raman spectroscopic study of the interaction of poly-L-lysine with dipalmitoylphosphatidylglycerol bilayers.

    Get PDF
    The interaction of the basic polypeptide poly-L-lysine with the negatively charged phospholipid dipalmitoylphosphatidylglycerol was studied using Raman spectroscopy. The nature of the interaction appeared to depend on the molar ratio of the constituents. At up to one lysine group per lipid molecule, the bilayer was stabilized by the polypeptide that underwent a conformational transition toward an ordered alpha-helical structure, in which the electrostatic interactions were probably maximal. The stabilization of the bilayer was detected by an increase in both the temperature of the thermotropic transition of the lipid and the interchain vibrational coupling of the methylene C-H vibrations. At higher poly-L-lysine concentration, hydrophobic interactions must have been involved to explain the binding of excess polypeptide. There seemed to be a penetration of poly-L-lysine in the bilayer that increased with the polypeptide concentration. Under these conditions, the chain-packing lattice gradually changed from hexagonal to either orthorhombic or monoclinic symmetry. We believe that this change of structure is associated with the interdigitation of the acyl chains

    Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy.

    Get PDF
    The interaction of a nonspecific wheat lipid transfer protein (LTP) with phospholipids has been studied using the monolayer technique as a simplified model of biological membranes. The molecular organization of the LTP-phospholipid monolayer has been determined by using polarized attenuated total internal reflectance infrared spectroscopy, and detailed information on the microstructure of the mixed films has been investigated by using epifluorescence microscopy. The results show that the incorporation of wheat LTP within the lipid monolayers is surface-pressure dependent. When LTP is injected into the subphase under a dipalmytoylphosphatidylglycerol monolayer at low surface pressure (< 20 mN/m), insertion of the protein within the lipid monolayer leads to an expansion of dipalmytoylphosphatidylglycerol surface area. This incorporation leads to a decrease in the conformational order of the lipid acyl chains and results in an increase in the size of the solid lipid domains, suggesting that LTP penetrates both expanded and solid domains. By contrast, when the protein is injected under the lipid at high surface pressure (> or = 20 mN/m) the presence of LTP leads neither to an increase of molecular area nor to a change of the lipid order, even though some protein molecules are bound to the surface of the monolayer, which leads to an increase of the exposure of the lipid ester groups to the aqueous environment. On the other hand, the conformation of LTP, as well as the orientation of alpha-helices, is surface-pressure dependent. At low surface pressure, the alpha-helices inserted into the monolayers are rather parallel to the monolayer plane. In contrast, at high surface pressure, the alpha-helices bound to the surface of the monolayers are neither parallel nor perpendicular to the interface but in an oblique orientation

    Model of interaction between a cardiotoxin and dimyristoylphosphatidic acid bilayers determined by solid-state 31P NMR spectroscopy.

    No full text
    The interaction of cardiotoxin IIa, a small basic protein extracted from Naja mossambica mossambica venom, with dimyristoylphosphatidic acid (DMPA) membranes has been investigated by solid-state 31P nuclear magnetic resonance spectroscopy. Both the spectral lineshapes and transverse relaxation time values have been measured as a function of temperature for different lipid-to-protein molar ratios. The results indicate that the interaction of cardiotoxin with DMPA gives rise to the complete disappearance of the bilayer structure at a lipid-to-protein molar ratio of 5:1. However, a coexistence of the lamellar and isotropic phases is observed at higher lipid contents. In addition, the number of phospholipids interacting with cardiotoxin increases from about 5 at room temperature to approximately 15 at temperatures above the phase transition of the pure lipid. The isotropic structure appears to be a hydrophobic complex similar to an inverted micellar phase that can be extracted by a hydrophobic solvent. At a lipid-to-protein molar ratio of 40:1, the isotropic structure disappears at high temperature to give rise to a second anisotropic phase, which is most likely associated with the incorporation of the hydrophobic complex inside the bilayer

    Raman spectroscopy of cytoplasmic muscle fiber proteins. Orientational order.

    Get PDF
    The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation
    corecore