53 research outputs found

    Kinetic, Isotherm and Thermodynamic Analysis on Adsorption of Cr(VI) Ions from Aqueous Solutions by Synthesis and Characterization of Magnetic-Poly(divinylbenzene-vinylimidazole) Microbeads

    Get PDF
    The magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter 53–212 μm) were synthesized and characterized; their use as adsorbent in removal of Cr(VI) ions from aqueous solutions was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterized by N2 adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM) and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. Langmuir, Freundlich and Dubinin–Radushkvich isotherms were used as the model adsorption equilibrium data. Langmuir isotherm model was the most adequate. The pseudo-first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The apparent activation energy was found to be 5.024 kJ mol−1, which is characteristic of a chemically controlled reaction. The experimental data fitted to pseudo-second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The thermodynamic parameters obtained indicated the endothermic nature of adsorption of Cr(VI) ions. Morever, after the use in adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property were separeted via the applied magnetic force. The magnetic beads could be desorbed up to about 97% by treating with 1.0 M NaOH. These features make the m-poly(DVB-VIM) microbeads a potential candidate for support of Cr(VI) ions removal under magnetic field

    Removal of hexavalent chromium-contaminated water and wastewater: A review

    No full text
    Cr(VI) is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. This article includes a survey of removal techniques for Cr(VI)-contaminated aqueous solutions. A particular focus is given to adsorption, membrane filtration, ion exchange, and electrochemical treatment methods. The primary objective of this article is to provide recent information about the most widely used techniques for Cr(VI) removal

    Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine

    No full text
    Removal of Cr(VI) ions from aqueous solution was investigated using modified palm shell activated carbon. Low Molecular Weight Polyethyleneimine (LMW PEI) was used for impregnation purpose. The maximum amount of LMW PEI adsorbed on activated carbon was determined to be approximately 228.2 mg/g carbon. The adsorption experiments were carried out in a batch system using potassium dichromate K2Cr2O7 as the source of Cr(VI) in the synthetic waste water and modified palm shell activated carbon as the adsorbent. The effects of pH, concentration of Cr(VI) and PEI loaded on activated carbon were studied. The adsorption data were found to fit well with the Freundlich isotherm model. This modified Palm shell activated carbon showed high adsorption capacity for chromium ions

    Effective Cr(VI) removal from simulated groundwater through the hydrotalcite-derived adsorbent

    No full text
    We investigated the feasibility of using calcined hydrotalcite (CHT) as the adsorbent of chromate to treat Cr(VI)-contaminated water through column tests under varied conditions. The column tests reveal that CHT can take up 34.3-44.7 mg(Cr)/g when the Cr(VI) concentration in the influent varies over a range of 50-200 mg/L (e.g., 0.96-3.85 mM) with pH 6-7 at 298 K. This uptake capacity is only reduced to 29.1 mg(Cr)/g when HCO-3 (1.0 mM) and Cl- (1.0 mM) coexist in the influent. We note that the treated water is of high quality and is free of Cr(VI), with Mg and Al concentrations of <5-10 mg/L, and a pH of 6.5-7.0. The quick desorption of Cr(VI) from the adsorbent (CHT) has enabled us to recover Cr(VI) from the contaminated water and regenerate the adsorbent. All these findings promise CHT as an effective regenerable adsorbent for the remediation of Cr(VI)-contaminated groundwater. © 2010 American Chemical Society.Yunfeng Xu, Jia Zhang, Guangren Qian, Zhong Ren, Zhi Ping Xu, Yueying Wu, Qiang Liu, and Shizhang Qia
    corecore