342 research outputs found
Development and Validation of the Short-LIMOS for the Acute Stroke Unit-A Short Version of the Lucerne ICF-Based Multidisciplinary Observation Scale.
Introduction
At hospital stroke units, the time available to assess the patient's limitations in activities and participation is limited, although being essential for discharge planning. Till date, there is no quick-to-perform instrument available that captures the patient's actual performance during daily activities from a motor, cognitive, and communication perspective within the International Classification of Functioning, Disability and Health (ICF) framework. Therefore, the aim was to develop and validate a shortened version of the Lucerne ICF-Based Multidisciplinary Observation Scale (Short-LIMOS) that observes the patient's performance across ICF-domains and is applicable in the context of an acute stroke unit.
Methods
The Short-LIMOS was developed by reducing the original 45-item LIMOS to the ten most important items using a multivariable linear regression ANOVA with data of 836 stroke patients collected during inpatient neurorehabilitation. The Short-LIMOS's reliability, validity, and responsiveness were evaluated with data of 416 stroke patients in the acute stroke unit.
Results
A significant equation [F (10,825) = 232.083] with R 2 of 0.738 was found for the following ten items for the Short-LIMOS: maintaining a body position (d415), changing basic body position (d410), climbing stairs (d4551), eating (d550), dressing (d540), communicating with-receiving-written messages (reading) (d325), applying knowledge, remembering facts (d179), solving complex problems (d1751), making simple decisions (d177), and undertaking a simple task (d2100). Principal component analysis revealed a Short-LIMOS motor and a Short-LIMOS cognition/communication component. The Short-LIMOS had a high internal consistency and good test-retest reliability. A moderate construct validity was shown by the significant correlation with the Barthel Index. The Short-LIMOS had neither floor nor ceiling effects.
Discussion and Conclusion
The developed Short-LIMOS was found to be reliable and valid within a population of (hyper)acute and subacute stroke patients. The added value of this multidisciplinary assessment is its comprehensiveness by capturing the patient's actual performance on the motor, cognitive, and communication domain embedded in an ICF-framework in <10 mins
Large Interferometer For Exoplanets (LIFE): VIII. Where is the phosphine? Observing exoplanetary PH3 with a space based MIR nulling interferometer
Phosphine could be a key molecule in the understanding of exotic chemistry
happening in (exo)planetary atmospheres. While it has been detected in the
Solar System's giant planets, it has not been observed in exoplanets yet. In
the exoplanetary context however it has been theorized as a potential
biosignature molecule. The goal of our study is to identify which illustrative
science cases for PH3 chemistry are observable with a space-based mid-infrared
nulling interferometric observatory like the LIFE (Large Interferometer For
Exoplanets) concept. We identified a representative set of scenarios for PH3
detections in exoplanetary atmospheres varying over the whole dynamic range of
the LIFE mission. We used chemical kinetics and radiative transfer calculations
to produce forward models of these informative, prototypical observational
cases for LIFEsim, our observation simulator software for LIFE. In a detailed,
yet first order approximation it takes a mission like LIFE: (i) about 1h to
find phosphine in a warm giant around a G star at 10 pc, (ii) about 10 h in H2
or CO2 dominated temperate super-Earths around M star hosts at 5 pc, (iii) and
even in 100h it seems very unlikely that phosphine would be detectable in a
Venus-Twin with extreme PH3 concentrations at 5 pc. Phosphine in concentrations
previously discussed in the literature is detectable in 2 out of the 3 cases
and about an order of magnitude faster than comparable cases with JWST. We show
that there is a significant number of objects accessible for these classes of
observations. These results will be used to prioritize the parameter range for
the next steps with more detailed retrieval simulations. They will also inform
timely questions in the early design phase of a mission like LIFE and guide the
community by providing easy-to-scale first estimates for a large part of
detection space of such a mission.Comment: In press. Accepted for publication in Astrobiology on 02 November
2022. 26 pages, 5 figures and 8 table
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b
Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites
Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer
WatsonâCrick and Sugar-Edge Base Pairing of Cytosine in the Gas Phase: UV and Infrared Spectra of Cytosine·2-Pyridone
While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (WatsonâCrick, wobble, sugar-edge). The mass- and isomer-specific S1 â S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the WatsonâCrick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the WatsonâCrick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1âH group prevents formation of both the sugar-edge and wobble isomers and gives the WatsonâCrick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the WatsonâCrick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification
Development and Validation of the Short-LIMOS for the Acute Stroke UnitâA Short Version of the Lucerne ICF-Based Multidisciplinary Observation Scale
IntroductionAt hospital stroke units, the time available to assess the patient's limitations in activities and participation is limited, although being essential for discharge planning. Till date, there is no quick-to-perform instrument available that captures the patient's actual performance during daily activities from a motor, cognitive, and communication perspective within the International Classification of Functioning, Disability and Health (ICF) framework. Therefore, the aim was to develop and validate a shortened version of the Lucerne ICF-Based Multidisciplinary Observation Scale (Short-LIMOS) that observes the patient's performance across ICF-domains and is applicable in the context of an acute stroke unit.MethodsThe Short-LIMOS was developed by reducing the original 45-item LIMOS to the ten most important items using a multivariable linear regression ANOVA with data of 836 stroke patients collected during inpatient neurorehabilitation. The Short-LIMOS's reliability, validity, and responsiveness were evaluated with data of 416 stroke patients in the acute stroke unit.ResultsA significant equation [F(10,825) = 232.083] with R2 of 0.738 was found for the following ten items for the Short-LIMOS: maintaining a body position (d415), changing basic body position (d410), climbing stairs (d4551), eating (d550), dressing (d540), communicating withâreceivingâwritten messages (reading) (d325), applying knowledge, remembering facts (d179), solving complex problems (d1751), making simple decisions (d177), and undertaking a simple task (d2100). Principal component analysis revealed a Short-LIMOS motor and a Short-LIMOS cognition/communication component. The Short-LIMOS had a high internal consistency and good test-retest reliability. A moderate construct validity was shown by the significant correlation with the Barthel Index. The Short-LIMOS had neither floor nor ceiling effects.Discussion and ConclusionThe developed Short-LIMOS was found to be reliable and valid within a population of (hyper)acute and subacute stroke patients. The added value of this multidisciplinary assessment is its comprehensiveness by capturing the patient's actual performance on the motor, cognitive, and communication domain embedded in an ICF-framework in <10 mins
Engineering a two-helix bundle protein for folding studies
The SAP domain from the Saccharomyces cerevisiae THO1 protein contains a hydrophobic core and just two α-helices. It could provide a system for studying protein folding that bridges the gap between studies on isolated helices and those on larger protein domains. We have engineered the SAP domain for protein folding studies by inserting a tryptophan residue into the hydrophobic core (L31W) and solved its structure. The helical regions had a backbone root mean-squared deviation of 0.9 Ă
from those of wild type. The mutation L31W destabilised wild type by 0.8 ± 0.1 kcal molâ1. The mutant folded in a reversible, apparent two-state manner with a microscopic folding rate constant of around 3700 sâ1 and is suitable for extended studies of folding
Deuterium isotope effects on 15N backbone chemical shifts in proteins
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Î15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Î15N(D) including the backbone dihedral angles, Ί and Κ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to NâH bond length. Another contributing factor is the effect of increased anharmonicity of the NâH stretching vibrational state upon hydrogen bonding, which results in an altered NâH/NâD equilibrium bond length ratio. The NâH stretching anharmonicity contribution falls off with the cosine of the NâH···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Î15N(D) can provide insights into hydrogen bonding geometries
- âŠ