574 research outputs found

    Tunneling Recombination in Optically Pumped Graphene with Electron-Hole Puddles

    Full text link
    We evaluate recombination of electrons and holes in optically pumped graphene associated with the interband tunneling between electron-hole puddles and calculate the recombination rate and time. It is demonstrated that this mechanism can be dominant in a wide range of pumping intensities. We show that the tunneling recombination rate and time are nonmonotonic functions of the quasi-Fermi energies of electrons and holes and optical pumping intensity. This can result in hysteresis phenomena.Comment: 4 pages, 3 figure

    Electrically-induced n-i-p junctions in multiple graphene layer structures

    Full text link
    The Fermi energies of electrons and holes and their densities in different graphene layers (GLs) in the n- and p-regions of the electrically induced n-i-p junctions formed in multiple-GL structures are calculated both numerically and using a simplified analytical model. The reverse current associated with the injection of minority carriers through the n- and p-regions in the electrically-induced n-i-p junctions under the reverse bias is calculated as well. It is shown that in the electrically-induced n-i-p junctions with moderate numbers of GLs the reverse current can be substantially suppressed. Hence, multiple-GL structures with such n-i-p junctions can be used in different electron and optoelectron devices.Comment: 7 pages, 6 figure

    Plasma mechanisms of resonant terahertz detection in two-dimensional electron channel with split gates

    Get PDF
    We analyze the operation of a resonant detector of terahertz (THz) radiation based on a two-dimensional electron gas (2DEG) channel with split gates. The side gates are used for the excitation of plasma oscillations by incoming THz radiation and control of the resonant plasma frequencies. The central gate provides the potential barrier separating the source and drain portions of the 2DEG channel. Two possible mechanisms of the detection are considered: (1) modulation of the ac potential drop across the barrier and (2) heating of the 2DEG due to the resonant plasma-assisted absorption of THz radiation followed by an increase in thermionic dc current through the barrier. Using the device model we calculate the frequency and temperature dependences of the detector responsivity associated with both dynamic and heating (bolometric) mechanisms. It is shown that the dynamic mechanisms dominates at elevated temperatures, whereas the heating mechanism provides larger contribution at low temperatures, T=35-40 K.Comment: 7 pages, 4 figure
    corecore