109 research outputs found

    Platinum-group elements in the cores of potassium feldspar spherules from the Cretaceous-Tertiary boundary at Caravaca (Spain)

    Get PDF
    The abundant spherules present in the Cretaceous-Tertiary boundary layer at Caravaca are diagenetically transformed to potassium feldspar. Before our study no possible relicts of the precursor material had been reported. but in this paper we describe the presence of cores in these spherules that could represent a relict of the «unknown precursor». These cores are made up of C mixed with Si. Mg. AL Cr. Ca among other elements. Laser Ablation System analysis also reveals an enrichment in pe;E could suggest an extraterrestrial origin for this material. PI. Pd and Ir do not show a chondritic ratio: however. asevere modification of their concentration could be expected during the early diagenetic processes.Las esférulas existentes en la lámina de sedimento del tránsito Cretácico-Terciario de la sección de Caravaca han sido transformadas diagenéticamente a feldespato potásico. En este trabajo se describe la existencia de núcleos encontrados en el interior de las esférulas. los cuales' pueden representar relictos del material precursor. Dichos núcleos están constituidos por C. Si. Mg, AL Cr y Ca entre otros elementos. Se pone de relieve, por vez primera, su notable enriquecimiento en elementos del grupo del platino, cuyas relaciones no condríticas pueden ser debidas a la existencia de importantes modificaciones en su concentración inicial causadas por los procesos diagenéticos y por la existencia de materia orgánica

    Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic

    Get PDF
    Previous paleoceanographic studies along the NW African margin focused on the dynamics of surface and intermediate waters, whereas little attention has been devoted to deep-water masses. Currently, these deep waters consist mainly of North Atlantic Deep Waters as part of the Atlantic Meridional Overturning Circulation (AMOC). However, this configuration was altered during periods of AMOC collapse. We present a highresolution reconstruction of bottom-water ventilation and current evolution off Mauritania from the last glacial maximum into the early Holocene. Applying redox proxies (Mo, U and Mn) measured on sediments from off Mauritania, we describe changes in deep-water oxygenation and we infer the evolution of deep-water conditions during millennial-scale climate/oceanographic events in the area. The second half of Heinrich Event 1 and the Younger Dryas were recognized as periods of reduced ventilation, coinciding with events of AMOC reduction. We propose that these weakening circulation events induced deficient deep-water oxygenation in the Mauritanian upwelling region, which together with increased productivity promoted reducing conditions and enhanced organic-matter preservation. This is the first time the effect of AMOC collapse in the area is described at high resolution, broadening the knowledge on basin-wide oceanographic changes associated with rapid climate variability during the last deglaciation

    Rapid Climate Changes in the Westernmost Mediterranean (Alboran Sea) Over the Last 35 kyr: New Insights From Four Lipid Paleothermometers (UK'37, TEXH86, RI-OH', and LDI)

    Get PDF
    The westernmost Mediterranean is one of the most sensitive areas to global climate change and high sedimentation rates allow recording high frequency variability. We present a high-resolution paleotemperature reconstruction over the last 35 kyr using, for the first time, four independent organic sea surface temperature (SST) proxies (U-37(K'), TEX86H, RI-OH' and LDI) based on alkenones, (hydroxy) isoprenoid GDGTs, and long-chain diols. We also generated a delta O-18 of planktonic foraminifera G. bulloides record together with records of bulk parameters (total organic carbon content, delta C-13(org)) and the accumulation rates of different biomarkers to provide insights into terrestrial input and primary producers. All derived-SST records showed similar trends over the last 35 kyr, revealing abrupt temperature variations during the last seven Dansgaard-Oeschger (D/O) cycles, the three Heinrich (H) events, the Last Glacial Maximum, and the Younger Dryas. H3 is recognized as the coldest event, while H1 was recorded by all SST proxies as the most abrupt one. In general, TEX86H-, RI-OH'- and LDI-SST estimates were lower than those obtained from U-37(K'). The LDI paleothermometer recorded the largest range of absolute SSTs over the whole period (ca. 20 degrees C) followed by RI-OH' (ca. 16 degrees C). TEX86H, RI-OH' and LDI proxies reflected sudden SST changes during the D/O 6 and 5 particularly well. Low BIT values and the abundance of C-32 1,15-diol in range with typical marine values indicated only minor input of continental organic matter. Accumulation rates of different lipid biomarkers were generally modulated by D/O cycles, suggesting enhanced productivity during D/O interstadials and the Bolling-Allerod period

    A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project

    Get PDF
    Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project “PROPAG-AGEING”, whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development

    Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients

    Get PDF
    A prodromal phase of Parkinson’s disease (PD) may precede motor manifestations by decades. PD patients’ siblings are at higher risk for PD, but the prevalence and distribution of prodromal symptoms are unknown. The study objectives were (1) to assess motor and non-motor features estimating prodromal PD probability in PD siblings recruited within the European PROPAG-AGEING project; (2) to compare motor and non-motor symptoms to the well-established DeNoPa cohort. 340 PD siblings from three sites (Bologna, Seville, Kassel/Goettingen) underwent clinical and neurological evaluations of PD markers. The German part of the cohort was compared with German de novo PD patients (dnPDs) and healthy controls (CTRs) from DeNoPa. Fifteen (4.4%) siblings presented with subtle signs of motor impairment, with MDS-UPDRS-III scores not clinically different from CTRs. Symptoms of orthostatic hypotension were present in 47 siblings (13.8%), no different to CTRs (p = 0.072). No differences were found for olfaction and overall cognition; German-siblings performed worse than CTRs in visuospatial-executive and language tasks. 3/147 siblings had video-polysomnography-confirmed REM sleep behavior disorder (RBD), none was positive on the RBD Screening Questionnaire. 173/300 siblings had <1% probability of having prodromal PD; 100 between 1 and 10%, 26 siblings between 10 and 80%, one fulfilled the criteria for prodromal PD. According to the current analysis, we cannot confirm the increased risk of PD siblings for prodromal PD. Siblings showed a heterogeneous distribution of prodromal PD markers and probability. Additional parameters, including strong disease markers, should be investigated to verify if these results depend on validity and sensitivity of prodromal PD criteria, or if siblings’ risk is not elevated

    Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients

    Get PDF
    Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress

    Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson’s disease patients

    Get PDF
    open101siThis work was supported by the Horizon 2020 Framework Programme (Grant number 634821, PROPAG-AGING).Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease.openZago E.; Dal Molin A.; Dimitri G.M.; Xumerle L.; Pirazzini C.; Bacalini M.G.; Maturo M.G.; Azevedo T.; Spasov S.; Gomez-Garre P.; Perinan M.T.; Jesus S.; Baldelli L.; Sambati L.; Calandra Buonaura G.; Garagnani P.; Provini F.; Cortelli P.; Mir P.; Trenkwalder C.; Mollenhauer B.; Franceschi C.; Lio P.; Nardini C.; Adarmes-Gomez A.; Azevedo T.; Bacalini M.G.; Baldelli L.; Bartoletti-Stella A.; Bhatia K.P.; Marta B.-T.; Boninsegna C.; Broli M.; Dolores B.-R.; Calandra-Buonaura G.; Capellari S.; Carrion-Claro M.; Cilea R.; Clayton R.; Cortelli P.; Molin A.D.; De Luca S.; De Massis P.; Dimitri G.M.; Doykov I.; Escuela-Martin R.; Fabbri G.; Franceschi C.; Gabellini A.; Garagnani P.; Giuliani C.; Gomez-Garre P.; Guaraldi P.; Hagg S.; Hallqvist J.; Halsband C.; Heywood W.; Houlden H.; Huertas I.; Jesus S.; Jylhava J.; Labrador-Espinosa M.A.; Licari C.; Lio P.; Luchinat C.; Macias D.; Macri S.; Magrinelli F.; Rodriguez J.F.M.; Massimo D.; Maturo M.G.; Mengozzi G.; Meoni G.; Mignani F.; Milazzo M.; Mills K.; Mir P.; Mollenhauer B.; Nardini C.; Nassetti S.A.; Pedersen N.L.; Perinan-Tocino M.T.; Pirazzini C.; Provini F.; Ravaioli F.; Sala C.; Sambati L.; Scaglione C.L.M.; Schade S.; Schreglmann S.; Spasov S.; Strom S.; Tejera-Parrado C.; Tenori L.; Trenkwalder C.; Turano P.; Valzania F.; Ortega R.V.; Williams D.; Xumerle L.; Zago E.Zago E.; Dal Molin A.; Dimitri G.M.; Xumerle L.; Pirazzini C.; Bacalini M.G.; Maturo M.G.; Azevedo T.; Spasov S.; Gomez-Garre P.; Perinan M.T.; Jesus S.; Baldelli L.; Sambati L.; Calandra Buonaura G.; Garagnani P.; Provini F.; Cortelli P.; Mir P.; Trenkwalder C.; Mollenhauer B.; Franceschi C.; Lio P.; Nardini C.; Adarmes-Gomez A.; Azevedo T.; Bacalini M.G.; Baldelli L.; Bartoletti-Stella A.; Bhatia K.P.; Marta B.-T.; Boninsegna C.; Broli M.; Dolores B.-R.; Calandra-Buonaura G.; Capellari S.; Carrion-Claro M.; Cilea R.; Clayton R.; Cortelli P.; Molin A.D.; De Luca S.; De Massis P.; Dimitri G.M.; Doykov I.; Escuela-Martin R.; Fabbri G.; Franceschi C.; Gabellini A.; Garagnani P.; Giuliani C.; Gomez-Garre P.; Guaraldi P.; Hagg S.; Hallqvist J.; Halsband C.; Heywood W.; Houlden H.; Huertas I.; Jesus S.; Jylhava J.; Labrador-Espinosa M.A.; Licari C.; Lio P.; Luchinat C.; Macias D.; Macri S.; Magrinelli F.; Rodriguez J.F.M.; Massimo D.; Maturo M.G.; Mengozzi G.; Meoni G.; Mignani F.; Milazzo M.; Mills K.; Mir P.; Mollenhauer B.; Nardini C.; Nassetti S.A.; Pedersen N.L.; Perinan-Tocino M.T.; Pirazzini C.; Provini F.; Ravaioli F.; Sala C.; Sambati L.; Scaglione C.L.M.; Schade S.; Schreglmann S.; Spasov S.; Strom S.; Tejera-Parrado C.; Tenori L.; Trenkwalder C.; Turano P.; Valzania F.; Ortega R.V.; Williams D.; Xumerle L.; Zago E

    Decomposing the Impact of Immigration on House Prices

    Full text link

    S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    Get PDF
    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress

    Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson’s disease patients

    Get PDF
    Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease
    corecore