4,136 research outputs found
A Slavnov-Taylor identity and equality of damping rates for static transverse and longitudinal gluons in hot QCD
A Slavnov-Taylor identity is derived for the gluon polarization tensor in hot
QCD. We evaluate its implications for damping of gluonic modes in the plasma.
Applying the identity to next to the leading order in hard-thermal-loop
resummed perturbation theory, we derive the expected equality of damping rates
for static transverse and longitudinal (soft) gluons. This is of interest also
in view of deviating recent reports of based
on a direct calculation of .Comment: 13 pages, 1 figure, LaTe
Complementarity of Entanglement and Interference
A complementarity relation is shown between the visibility of interference
and bipartite entanglement in a two qubit interferometric system when the
parameters of the quantum operation change for a given input state. The
entanglement measure is a decreasing function of the visibility of
interference. The implications for quantum computation are briefly discussed.Comment: Final version, to appear on IJMPC; minor revision
Numerical simulation on deposition phenomena of impact particle in cold spraying process
Cold spraying is a new coating technique that makes a thin layer on the solid surface of various mechanical components using tiny material particles. Differing from the conventional thermal spraying methods, there are some advantages for example, oxidation and thermal deformation of the target substrate is unlikely to occur. While the fundamental researches and applications of a cold spraying have been carried out, deposition phenomena in cold spray has not been fully clarified yet. In this paper, numerical simulations on the first step of the film forming process are conducted by a MPS (Moving Particle Semi-implicit) method. Thereby, the numerical result of the height of the particle deposition is well accord with the experiment. The characteristic phenomena is reasonably reproduced. That is, an impinging particle whose speed is lower than the critical velocity rebounds from the substrate, meanwhile, an impinging particle whose speed is higher than the critical velocity adheres on the substrate
Interplay between structure and magnetism in nanowires
We investigate the equilibrium geometry and electronic structure of
MoSI nanowires using ab initio Density Functional
calculations. The skeleton of these unusually stable nanowires consists of
rigid, functionalized Mo octahedra, connected by flexible, bi-stable sulphur
bridges. This structural flexibility translates into a capability to stretch up
to approximate 20% at almost no energy cost. The nanowires change from
conductors to narrow-gap magnetic semiconductors in one of their structural
isomers.Comment: 4 pages with PRL standards and 3 figure
Dynamic SU(2) Lattice Gauge Theory at Finite Temperature
The dynamic relaxation process for the (2+1)--dimensional SU(2) lattice gauge
theory at critical temperature is investigated with Monte Carlo methods. The
critical initial increase of the Polyakov loop is observed. The dynamic
exponents and as well as the static critical exponent
are determined from the power law behaviour of the Polyakov loop, the
auto-correlation and the second moment at the early stage of the time
evolution. The results are well consistent and universal short-time scaling
behaviour of the dynamic system is confirmed. The values of the exponents show
that the dynamic SU(2) lattice gauge theory is in the same dynamic universality
class as the dynamic Ising model.Comment: 10 pages with 2 figure
Short-time critical dynamics and universality on a two-dimensional Triangular Lattice
Critical scaling and universality in short-time dynamics for spin models on a
two-dimensional triangular lattice are investigated by using Monte Carlo
simulation. Emphasis is placed on the dynamic evolution from fully ordered
initialstates to show that universal scaling exists already in the short-time
regime in form of power-law behavior of the magnetization and Binder cumulant.
The results measured for the dynamic and static critical exponents, ,
, and , confirm explicitly that the Potts models on the
triangular lattice and square lattice belong to the same universality class.
Our critical scaling analysis strongly suggests that the simulation for the
dynamic relaxation can be used to determine numerically the universality.Comment: LaTex, 11 pages and 10 figures, to be published in Physica
Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model
We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase
transition for the spin-1/2 quantum XY model in two dimensions. The short-time
dynamic scaling behaviour is found and the dynamical exponent , and
the static exponent are determined at the transition temperature.Comment: 6 pages with 3 figure
Observation of an energetic radiation burst from mountain-top thunderclouds
During thunderstorms on 2008 September 20, a simultaneous detection of gamma
rays and electrons was made at a mountain observatory in Japan located 2770 m
above sea level. Both emissions, lasting 90 seconds, were associated with
thunderclouds rather than lightning. The photon spectrum, extending to 10 MeV,
can be interpreted as consisting of bremsstrahlung gamma rays arriving from a
source which is 60 - 130 m in distance at 90% confidence level. The observed
electrons are likely to be dominated by a primary population escaping from an
acceleration region in the clouds.Comment: 12 pages, 3 figures, accepted for publication in Physical Review
Letter
- …