76 research outputs found

    Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s.

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) and type 2 helper T cells (Th2 cells) are the primary source of interleukin 5 (IL-5) and IL-13 during type 2 (allergic) inflammation in the lung. In Th2 cells, T cell receptor (TCR) signaling activates the transcription factors nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB), and activator protein 1 (AP-1) to induce type 2 cytokines. ILC2s lack a TCR and respond instead to locally produced cytokines such as IL-33. Although IL-33 induces AP-1 and NF-κB, NFAT signaling has not been described in ILC2s. In this study, we report a nonredundant NFAT-dependent role for lipid-derived leukotrienes (LTs) in the activation of lung ILC2s. Using cytokine reporter and LT-deficient mice, we find that complete disruption of LT signaling markedly diminishes ILC2 activation and downstream responses during type 2 inflammation. Type 2 responses are equivalently attenuated in IL-33- and LT-deficient mice, and optimal ILC2 activation reflects potent synergy between these pathways. These findings expand our understanding of ILC2 regulation and may have important implications for the treatment of airways disease

    Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness

    Get PDF
    Objective: The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness. Methods: Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including "classical" cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed. Results: There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype. Conclusions: Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility

    Record linkage to obtain birth outcomes for the evaluation of screening biomarkers in pregnancy: a feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linking population health data to pathology data is a new approach for the evaluation of predictive tests that is potentially more efficient, feasible and efficacious than current methods. Studies evaluating the use of first trimester maternal serum levels as predictors of complications in pregnancy have mostly relied on resource intensive methods such as prospective data collection or retrospective chart review. The aim of this pilot study is to demonstrate that record-linkage between a pathology database and routinely collected population health data sets provides follow-up on patient outcomes that is as effective as more traditional and resource-intensive methods. As a specific example, we evaluate maternal serum levels of PAPP-A and free <it>β</it>-hCG as predictors of adverse pregnancy outcomes, and compare our results with those of prospective studies.</p> <p>Methods</p> <p>Maternal serum levels of PAPP-A and free <it>β</it>-hCG for 1882 women randomly selected from a pathology database in New South Wales (NSW) were linked to routinely collected birth and hospital databases. Crude relative risks were calculated to investigate the association between low levels (multiples of the median ≤ 5<sup>th </sup>percentile) of PAPP-A or free <it>β</it>-hCG and the outcomes of preterm delivery (<37 weeks), small for gestational age (<10<sup>th </sup>percentile), fetal loss and stillbirth.</p> <p>Results</p> <p>Using only full name, sex and date of birth for record linkage, pregnancy outcomes were available for 1681 (89.3%) of women included in the study. Low levels of PAPP-A had a stronger association with adverse pregnancy outcomes than a low level of free <it>β</it>-hCG which is consistent with results in published studies. The relative risk of having a preterm birth with a low maternal serum PAPP-A level was 3.44 (95% CI 1.96–6.10) and a low free <it>β</it>-hCG level was 1.31 (95% CI 0.55–6.16).</p> <p>Conclusion</p> <p>This study provides data to support the use of record linkage for outcome ascertainment in studies evaluating predictive tests. Linkage proportions are likely to increase if more personal identifiers are available. This method of follow-up is a cost-efficient technique and can now be applied to a larger cohort of women.</p

    Sex Differential Genetic Effect of Chromosome 9p21 on Subclinical Atherosclerosis

    Get PDF
    BACKGROUND: Chromosome 9p21 has recently been shown to be a risk region for a broad range of vascular diseases. Since carotid intima-media thickness (IMT) and plaque are independent predictors for vascular diseases, the association between 9p21 and these two phenotypes was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Carotid segment-specific IMT and plaques were obtained in 1083 stroke- and myocardial infarction-free volunteers. We tested the genotypes and haplotypes of key single nucleotide polymorphisms (SNPs) on chromosome 9p21 for the associations with carotid IMT and plaque. Multivariate permutation analyses demonstrated that carriers of the T allele of SNP rs1333040 were significantly associated with thicker common carotid artery (CCA) IMT (p=0.021) and internal carotid artery (ICA) IMT (p=0.033). The risk G allele of SNP rs2383207 was associated with ICA IMT (p=0.007). Carriers of the C allele of SNP rs1333049 were found to be significantly associated with thicker ICA IMT (p=0.010) and the greater risk for the presence of carotid plaque (OR=1.57 for heterozygous carriers; OR=1.75 for homozygous carriers). Haplotype analysis showed a global p value of 0.031 for ICA IMT and 0.115 for the presence of carotid plaque. Comparing with the other haplotypes, the risk TGC haplotype yielded an adjusted p value of 0.011 and 0.017 for thicker ICA IMT and the presence of carotid plaque respectively. Further analyzing the data separated by sex, the results were significant only in men but not in women. CONCLUSIONS: Chromosome 9p21 had a significant association with carotid atherosclerosis, especially ICA IMT. Furthermore, such genetic effect was in a gender-specific manner in the Han Chinese population

    What Happened to Gray Whales during the Pleistocene? The Ecological Impact of Sea-Level Change on Benthic Feeding Areas in the North Pacific Ocean

    Get PDF
    Gray whales (Eschrichtius robustus) undertake long migrations, from Baja California to Alaska, to feed on seasonally productive benthos of the Bering and Chukchi seas. The invertebrates that form their primary prey are restricted to shallow water environments, but global sea-level changes during the Pleistocene eliminated or reduced this critical habitat multiple times. Because the fossil record of gray whales is coincident with the onset of Northern Hemisphere glaciation, gray whales survived these massive changes to their feeding habitat, but it is unclear how.We reconstructed gray whale carrying capacity fluctuations during the past 120,000 years by quantifying gray whale feeding habitat availability using bathymetric data for the North Pacific Ocean, constrained by their maximum diving depth. We calculated carrying capacity based on modern estimates of metabolic demand, prey availability, and feeding duration; we also constrained our estimates to reflect current population size and account for glaciated and non-glaciated areas in the North Pacific. Our results show that key feeding areas eliminated by sea-level lowstands were not replaced by commensurate areas. Our reconstructions show that such reductions affected carrying capacity, and harmonic means of these fluctuations do not differ dramatically from genetic estimates of carrying capacity.Assuming current carrying capacity estimates, Pleistocene glacial maxima may have created multiple, weak genetic bottlenecks, although the current temporal resolution of genetic datasets does not test for such signals. Our results do not, however, falsify molecular estimates of pre-whaling population size because those abundances would have been sufficient to survive the loss of major benthic feeding areas (i.e., the majority of the Bering Shelf) during glacial maxima. We propose that gray whales survived the disappearance of their primary feeding ground by employing generalist filter-feeding modes, similar to the resident gray whales found between northern Washington State and Vancouver Island

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe
    corecore