55 research outputs found

    Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes

    Get PDF
    BACKGROUND: Early clinical trials, mostly in the setting of melanoma, have shown that dendritic cells (DCs) expressing tumor antigens induce some immune responses and some clinical responses. A major difficulty is the extension to other tumors, such as breast carcinoma, for which few defined tumor-associated antigens are available. We have demonstrated, using both prostate carcinoma and melanoma as model systems, that DCs loaded with killed allogeneic tumor cell lines can induce CD8(+ )T cells to differentiate into cytotoxic T lymphocytes (CTLs) specific for shared tumor antigens. METHODS: The present study was designed to determine whether DCs would capture killed breast cancer cells and present their antigens to autologous CD4(+ )and CD8(+ )T cells. RESULTS: We show that killed breast cancer cells are captured by immature DCs that, after induced maturation, can efficiently present MHC class I and class II peptides to CD8(+ )and CD4(+ )T lymphocytes. The elicited CTLs are able to kill the target cells without a need for pretreatment with interferon gamma. CTLs can be obtained by culturing the DCs loaded with killed breast cancer cells with unseparated peripheral blood lymphocytes, indicating that the DCs can overcome any potential inhibitory effects of breast cancer cells. CONCLUSION: Loading DCs with killed breast cancer cells may be considered a novel approach to breast cancer immunotherapy and to identification of shared breast cancer antigens

    Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8(+ )T cells by dendritic cells loaded with killed allogeneic breast cancer cells

    Get PDF
    INTRODUCTION: The ability of dendritic cells (DCs) to take up whole tumor cells and process their antigens for presentation to T cells ('cross-priming') is an important mechanism for induction of tumor specific immunity. METHODS: In vitro generated DCs were loaded with killed allogeneic breast cancer cells and offered to autologous naïve CD8(+ )T cells in 2-week and/or 3-week cultures. CD8(+ )T cell differentiation was measured by their capacity to secrete effector cytokines (interferon-γ) and kill breast cancer cells. Specificity was measured using peptides derived from defined breast cancer antigens. RESULTS: We found that DCs loaded with killed breast cancer cells can prime naïve CD8(+ )T cells to differentiate into effector cytotoxic T lymphocytes (CTLs). Importantly, these CTLs primed by DCs loaded with killed HLA-A*0201(- )breast cancer cells can kill HLA-A*0201(+ )breast cancer cells. Among the tumor specific CTLs, we found that CTLs specific for HLA-A2 restricted peptides derived from three well known shared breast tumor antigens, namely cyclin B1, MUC-1 and survivin. CONCLUSION: This ability of DCs loaded with killed allogeneic breast cancer cells to elicit multiantigen specific immunity supports their use as vaccines in patients with breast cancer

    Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.</p> <p>Methods</p> <p>The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD <it>versus </it>control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.</p> <p>Results</p> <p>In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival <it>in vitro </it>when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.</p> <p>Conclusions</p> <p>These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.</p

    Tobacco Upregulates P. gingivalis Fimbrial Proteins Which Induce TLR2 Hyposensitivity

    Get PDF
    Tobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P. gingivalis adapts by altering the expression of several virulence factors - including major and minor fimbrial antigens (FimA and Mfa1, respectively) and capsule - concomitant with a reduced pro-inflammatory potential of intact P. gingivalis.We hypothesized that CSE-regulation of capsule and fimbrial genes is reflected at the ultrastructural and functional levels, alters the nature of host-pathogen interactions, and contributes to the reduced pro- inflammatory potential of smoke exposed P. gingivalis. CSE induced ultrastructural alterations were determined by electron microscopy, confirmed by Western blot and physiological consequences studied in open-flow biofilms. Inflammatory profiling of specific CSE-dysregulated proteins, rFimA and rMfa1, was determined by quantifying cytokine induction in primary human innate and OBA-9 cells. CSE up-regulates P. gingivalis FimA at the protein level, suppresses the production of capsular polysaccharides at the ultrastructural level, and creates conditions that promote biofilm formation. We further show that while FimA is recognized by TLR2/6, it has only minimal inflammatory activity in several cell types. Furthermore, FimA stimulation chronically abrogates the pro-inflammatory response to subsequent TLR2 stimulation by other TLR-2-specific agonists (Pam3CSK4, FSL, Mfa1) in an IkappaBalpha- and IRAK-1-dependent manner.These studies provide some of the first information to explain, mechanistically, how tobacco smoke changes the P. gingivalis phenotype in a manner likely to promote P. gingivalis colonization and infection while simultaneously reducing the host response to this major mucosal pathogen

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells

    Full text link
    Due to the pivotal role that dendritic cells (DC) play in eliciting and maintaining functional anti-tumor T cell responses, these APC have been exploited against tumors. DC express several receptors for the Fc portion of IgG (Fcγ receptors) that mediate the internalization of antigen-IgG complexes and promote efficient MHC class I and II restricted antigen presentation. In this study, the efficacy of vaccination with DC pulsed with apoptotic B16 melanoma cells opsonized with an anti-CD44 IgG (B16-CD44) was explored. Immature bone marrow derived DC grown in vitro with IL-4 and GM-CSF were pulsed with B16-CD44. After 48 h of pulsing, maturation of DC was demonstrated by production of IL-12 and upregulation of CD80 and CD40 expression. To test the efficacy of vaccination with DC+B16-CD44, mice were vaccinated subcutaneously Lymphocytes from mice vaccinated with DC+B16-CD44 produced IFN-γ in response to B16 melanoma lysates as well as an MHC class I restricted B16 melanoma-associated peptide, indicating B16 specific CD8 T cell activation. Upon challenge with viable B16 cells, all mice vaccinated with DC alone developed tumor compared to 40% of mice vaccinated with DC+B16-CD44; 60% of the latter mice remained tumor free for at least 8 months. In addition, established lung tumors and distant metastases were significantly reduced in mice treated with DC+B16-CD44. Lastly, delayed growth of established subcutaneous tumors was induced by combination therapy with anti-CD44 antibodies followed by DC injection. This study demonstrates the efficacy of targeting tumor antigens to DC via Fcγ receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45862/1/262_2005_Article_104.pd

    Evidence for the immunosuppressive role of nicotine on human dendritic cell functions

    No full text
    Nicotine alters a wide range of immunological functions, including innate and adaptive immune responses. To date, no studies have been reported showing the immunoregulatory effects of nicotine on dendritic cells (DCs), which are critical cells for initiation of cell-mediated immunity against infection and neoplastic diseases. In this work, we report that, in a nicotinic environment, monocyte-derived DCs manifest lower endocytic and phagocytic activities. Interestingly, although immature DCs undergo maturation in response to bacterial antigen lipopolysaccharide, they produce decreased levels of pro-inflammatory cytokines, notably interleukin-12, and reveal a reduced ability to stimulate antigen-presenting cell-dependent T-cell responses. Importantly, the reduction in T-cell responses is associated with a diminished ability of DCs to induce differentiation and expansion of type 1 T cells, as evidenced by a decreased frequency of interferon-γ-producing effector cells. These results strongly suggest that nicotine can exert its immunosuppressive effects on immune surveillance through functional impairment of the DC system
    corecore