227 research outputs found
A Novel Sequence-Based Antigenic Distance Measure for H1N1, with Application to Vaccine Effectiveness and the Selection of Vaccine Strains
H1N1 influenza causes substantial seasonal illness and was the subtype of the
2009 influenza pandemic. Precise measures of antigenic distance between the
vaccine and circulating virus strains help researchers design influenza
vaccines with high vaccine effectiveness. We here introduce a sequence-based
method to predict vaccine effectiveness in humans. Historical epidemiological
data show that this sequence-based method is as predictive of vaccine
effectiveness as hemagglutination inhibition (HI) assay data from ferret animal
model studies. Interestingly, the expected vaccine effectiveness is greater
against H1N1 than H3N2, suggesting a stronger immune response against H1N1 than
H3N2. The evolution rate of hemagglutinin in H1N1 is also shown to be greater
than that in H3N2, presumably due to greater immune selection pressure.Comment: 26 pages, 7 figures, 2 tables, supplemen
Triple Combination Antiviral Drug (TCAD) Composed of Amantadine, Oseltamivir, and Ribavirin Impedes the Selection of Drug-Resistant Influenza A Virus
Widespread resistance among circulating influenza A strains to at least one of the anti-influenza drugs is a major public health concern. A triple combination antiviral drug (TCAD) regimen comprised of amantadine, oseltamivir, and ribavirin has been shown to have synergistic and broad spectrum activity against influenza A strains, including drug resistant strains. Here, we used mathematical modeling along with three different experimental approaches to understand the effects of single agents, double combinations, and the TCAD regimen on resistance in influenza in vitro, including: 1) serial passage at constant drug concentrations, 2) serial passage at escalating drug concentrations, and 3) evaluation of the contribution of each component of the TCAD regimen to the suppression of resistance. Consistent with the modeling which demonstrated that three drugs were required to suppress the emergence of resistance in influenza A, treatment with the TCAD regimen resulted in the sustained suppression of drug resistant viruses, whereas treatment with amantadine alone or the amantadine-oseltamivir double combination led to the rapid selection of resistant variants which comprised βΌ100% of the population. Furthermore, the TCAD regimen imposed a high genetic barrier to resistance, requiring multiple mutations in order to escape the effects of all the drugs in the regimen. Finally, we demonstrate that each drug in the TCAD regimen made a significant contribution to the suppression of virus breakthrough and resistance at clinically achievable concentrations. Taken together, these data demonstrate that the TCAD regimen was superior to double combinations and single agents at suppressing resistance, and that three drugs at a minimum were required to impede the selection of drug resistant variants in influenza A virus. The use of mathematical modeling with multiple experimental designs and molecular readouts to evaluate and optimize combination drug regimens for the suppression of resistance may be broadly applicable to other infectious diseases
A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses
BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas
Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back?
A group of 160 patients with primary glioblastoma treated with radiotherapy and temozolomide was analyzed for the impact of O6-methly-guanly-methyl-transferase (MGMT)-promoter methylation as well as isocitrate dehydrogenase (IDH)1-mutational status. Unexpectedly, overall survival or progression-free survival were not longer in the group with methylated MGMT-promoter as compared to patients without that methylation. IDH-1 mutations were significantly associated with increased overall survival
From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation Rates Across Viruses
Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies
Molecular and Antigenic Characterization of Reassortant H3N2 Viruses from Turkeys with a Unique Constellation of Pandemic H1N1 Internal Genes
Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro
Identifying Changes in Selective Constraints: Host Shifts in Influenza
The natural reservoir of Influenza A is waterfowl. Normally, waterfowl viruses are not adapted to infect and spread in the human population. Sometimes, through reassortment or through whole host shift events, genetic material from waterfowl viruses is introduced into the human population causing worldwide pandemics. Identifying which mutations allow viruses from avian origin to spread successfully in the human population is of great importance in predicting and controlling influenza pandemics. Here we describe a novel approach to identify such mutations. We use a sitewise non-homogeneous phylogenetic model that explicitly takes into account differences in the equilibrium frequencies of amino acids in different hosts and locations. We identify 172 amino acid sites with strong support and 518 sites with moderate support of different selection constraints in human and avian viruses. The sites that we identify provide an invaluable resource to experimental virologists studying adaptation of avian flu viruses to the human host. Identification of the sequence changes necessary for host shifts would help us predict the pandemic potential of various strains. The method is of broad applicability to investigating changes in selective constraints when the timing of the changes is known
Rapid Evolution of Pandemic Noroviruses of the GII.4 Lineage
Over the last fifteen years there have been five pandemics of norovirus (NoV) associated gastroenteritis, and the period of stasis between each pandemic has been progressively shortening. NoV is classified into five genogroups, which can be further classified into 25 or more different human NoV genotypes; however, only one, genogroup II genotype 4 (GII.4), is associated with pandemics. Hence, GII.4 viruses have both a higher frequency in the host population and greater epidemiological fitness. The aim of this study was to investigate if the accuracy and rate of replication are contributing to the increased epidemiological fitness of the GII.4 strains. The replication and mutation rates were determined using in vitro RNA dependent RNA polymerase (RdRp) assays, and rates of evolution were determined by bioinformatics. GII.4 strains were compared to the second most reported genotype, recombinant GII.b/GII.3, the rarely detected GII.3 and GII.7 and as a control, hepatitis C virus (HCV). The predominant GII.4 strains had a higher mutation rate and rate of evolution compared to the less frequently detected GII.b, GII.3 and GII.7 strains. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution within the capsid sequence and a greater number of non-synonymous changes compared to other NoVs, supporting the theory that it is undergoing antigenic drift at a faster rate. Interestingly, the non-synonymous mutations for all three NoV genotypes were localised to common structural residues in the capsid, indicating that these sites are likely to be under immune selection. This study supports the hypothesis that the ability of the virus to generate genetic diversity is vital for viral fitness
- β¦