45,860 research outputs found

    Impurity susceptibility and the fate of spin-flop transitions in lightly-doped La(2)CuO(4)

    Full text link
    We investigate the occurrence of a two-step spin-flop transition and spin reorientation when a longitudinal magnetic field is applied to lightly hole-doped La(2)CuO(4). We find that for large and strongly frustrating impurities, such as Sr in La(2-x)Sr(x)CuO(4), the huge enhancement of the longitudinal susceptibility suppresses the intermediate flop and the reorientation of spins is smooth and continuous. Contrary, for small and weakly frustrating impurities, such as O in La(2)CuO(4+y), a discontinuous spin reorientation (two-step spin-flop transition) takes place. Furthermore, we show that for La(2-x)Sr(x)CuO(4) the field dependence of the magnon gaps differs qualitatively from the La(2)CuO(4) case, a prediction to be verified with Raman spectroscopy or neutron scattering.Comment: 4 pages, 3 figures, For the connection between spin-flops and magnetoresistance, see cond-mat/061081

    Magnetic quantum phase transitions of the antiferromagnetic J_{1}-J_{2} Heisenberg model

    Full text link
    We obtain the complete phase diagram of the antiferromagnetic J1J_{1}-J2J_{2} model, 0α=J2/J110\leq \alpha = J_2/J1 \leq 1, within the framework of the O(N)O(N) nonlinear sigma model. We find two magnetically ordered phases, one with N\' eel order, for α0.4\alpha \leq 0.4, and another with collinear order, for α0.6\alpha\geq 0.6, separated by a nonmagnetic region, for 0.4α0.60.4\leq \alpha \leq 0.6, where a gapped spin liquid is found. The transition at α=0.4\alpha=0.4 is of the second order while the one at α=0.6\alpha=0.6 is of the first order and the spin gaps cross at α=0.5\alpha=0.5. Our results are exact at NN\rightarrow\infty and agree with numerical results from different methods.Comment: 4 pages, 5 figure

    Time-dependent cosmological constant in the Jackiw-Teitelboim cosmology

    Get PDF
    We study the obtainment of a time-dependent cosmological constant at D=2 in a model based on the Jackiw-Teitelboim cosmology. We show that the cosmological term goes to zero asymptotically and can induce a nonsingular behavior at the origin.Comment: 4 pages, Revtex4, twocolum
    corecore