45 research outputs found

    High Specific Energy Lithium Cells for Space Exploration

    Full text link
    The paper discusses development under an ESA TRP activity (Contract No. 4000109879/13/NL/LvH) with a target of high specific energy Lithium-ion cells, capable of operating under low temperature conditions, i.e. −40 °C. Such cells may be encountered in future exploration missions, which do not consider the use of Radioisotope Heater Units. During the activity, ≥1 Ah silicon-based high energy density prototype cells, following components characterization and optimization, were designed, developed, manufactured and tested under room and subzero temperature conditions down to −40 °C. The developed and tested prototype cells exhibited energy density of around 208 Wh/Kg at room temperature under C/10 charge-discharge rate within voltage range of 2.8 V and 4.1 V. Moreover, the prototype cells could retain and deliver more than 75% of their capacity at room temperature upon cycling at −40 °C, demonstrating an energy density of 140 Wh/kg

    A Genome-Wide association Study of Obstructive Heart Defects among Participants in the National Birth Defects Prevention Study

    Get PDF
    Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (

    A genome-wide association study of obstructive heart defects among participants in the National Birth Defects Prevention Study

    Get PDF
    Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery = 3978; Nreplication = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT = 440; Nreplication_TDT = 275) and case–control analyses separately in infants (Ndiscovery_CCI = 1635; Nreplication_CCI = 990) and mothers (case status defined by infant; Ndiscovery_CCM = 1703; Nreplication_CCM = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery = 4.08 × 10−9; preplication = 2.44 × 10−4). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery = 1.61 × 10−7; preplication = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10−6) with OHD in only the discovery sample. In the case–control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds (× discovery < 1 × 10−5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery = 1.42 × 10−6; preplication = 0.04). Additional SNPs with pdiscovery < 1 × 10−5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings

    Shiga Toxin and Lipopolysaccharide Induce Platelet-Leukocyte Aggregates and Tissue Factor Release, a Thrombotic Mechanism in Hemolytic Uremic Syndrome

    Get PDF
    BACKGROUND: Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)-bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF. METHODOLOGY/PRINCIPAL FINDINGS: The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF-expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery. CONCLUSIONS/SIGNIFICANCE: By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS

    Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2

    Get PDF
    Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains

    Paediatric arterial ischemic stroke: acute management, recent advances and remaining issues

    Full text link

    High Specific Li-ion cells based on high voltage materials

    No full text
    This paper presents the results obtain in the frame of the ESA TRP: High specific Li-ion cells based on high voltage materials. As there is a need of high energy cells for Space application, a low TRL study was performed by Saft, CEA and ADS in order to developed high energy cells prototypes with a space proven cell mechanical design. The program was divided into 3 main parts. 1) Bibliographic study on the most promising active materials, 2nd a laboratory 2) Laboratory scale study of the selected active materials 3) Realization and electrochemical evaluation of format D prototype cell

    High Specific Li-ion cells based on high voltage materials

    No full text
    This paper presents the results obtain in the frame of the ESA TRP: High specific Li-ion cells based on high voltage materials. As there is a need of high energy cells for Space application, a low TRL study was performed by Saft, CEA and ADS in order to developed high energy cells prototypes with a space proven cell mechanical design. The program was divided into 3 main parts. 1) Bibliographic study on the most promising active materials, 2nd a laboratory 2) Laboratory scale study of the selected active materials 3) Realization and electrochemical evaluation of format D prototype cell

    Cathode Materials for High Energy Density Lithium Batteries

    No full text
    Two classes of cathode materials have been developed for high energy density applications. The Li-rich layered oxide material with the general formula Li1+xM1-xO2 (M = Ni, Mn, Co) and the lithium manganese silicate Li2MnSiO4. Both materials have theoretical capacities higher than commercialized ones, which may give rise to higher energy density batteries. Li-rich materials have been prepared by solid state and co-precipitation routes. Transmission Electron Microscopy (TEM) characterization showed an irreversible evolution of the structure through a spinel phase during the first charge. Electron Energy Loss Spectroscopy (EELS) also showed a continuous cation migration during cycling of the material leading to charge/discharge voltage decay. The redox process has been studied by X-Ray Diffraction (XRD) in synchrotron facilities (ESRF, Grenoble, France). Ni/Mn ratio has been identified to have a great role on capacity fading of the material. Finally, a Li-rich optimized composition has been prepared and stable reversible capacity of 250 mAh.g-1 has been obtained. Li2MnSiO4 has a large theoretical specific capacity (333 mAh/g) through exchange of 2 lithium ions per formula unit. The thermal stability due to strong Si-O bonds makes LiMnSiO a very promising material for future energy storage in space applications. Preparation in inert atmosphere showed beneficial improvements of LMSO’s electrochemical properties. Nano-sizing and carbon coating have been effective ways to improve electronic conductivity and therefore electrochemical performance. Up to 1.66 Li per formula unit can be re-inserted in the 1st cycle. XRD analysis showed complete amorphization of Li2MnSiO4 after the 1st charge at 4.8 V with complete modification of the charge/discharge curves in the next cycles. Increasing the carbon coating ratio limits capacity loss during cycling but did not avoid amorphization. Finally influence of voltage window on structure stability was investigated. Careful choice of upper limit voltage has been showed to stabilize Li2MnSiO4 structure but for now is still limited to low Li+ insertion/extraction from the host material
    corecore